MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfid Structured version   Visualization version   GIF version

Theorem ssfid 8350
Description: A subset of a finite set is finite, deduction version of ssfi 8347. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
ssfid.1 (𝜑𝐴 ∈ Fin)
ssfid.2 (𝜑𝐵𝐴)
Assertion
Ref Expression
ssfid (𝜑𝐵 ∈ Fin)

Proof of Theorem ssfid
StepHypRef Expression
1 ssfid.1 . 2 (𝜑𝐴 ∈ Fin)
2 ssfid.2 . 2 (𝜑𝐵𝐴)
3 ssfi 8347 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
41, 2, 3syl2anc 696 1 (𝜑𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2139  wss 3715  Fincfn 8123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-om 7232  df-er 7913  df-en 8124  df-fin 8127
This theorem is referenced by:  marypha1lem  8506  pwfseqlem4  9696  fsumcom2  14724  fprodcom2  14933  sylow2a  18254  ablfac1eu  18692  wspthnfi  27060  wspthnonfi  27063  clwwlknfi  27195  qerclwwlknfi  27225  clwlknon2num  27550  numclwlk1lem2  27552  fsumiunle  29905  hashreprin  31028  reprfi2  31031  hgt750lema  31065  tgoldbachgtde  31068  fprodcnlem  40352  cnrefiisplem  40576  sge0uzfsumgt  41182  hoidmvlelem1  41333  hoidmvlelem2  41334  hoidmvlelem3  41335  hoidmvlelem4  41336  hspmbllem1  41364
  Copyright terms: Public domain W3C validator