![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssfid | Structured version Visualization version GIF version |
Description: A subset of a finite set is finite, deduction version of ssfi 8347. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
ssfid.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
ssfid.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
ssfid | ⊢ (𝜑 → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfid.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | ssfid.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
3 | ssfi 8347 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
4 | 1, 2, 3 | syl2anc 696 | 1 ⊢ (𝜑 → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 ⊆ wss 3715 Fincfn 8123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-om 7232 df-er 7913 df-en 8124 df-fin 8127 |
This theorem is referenced by: marypha1lem 8506 pwfseqlem4 9696 fsumcom2 14724 fprodcom2 14933 sylow2a 18254 ablfac1eu 18692 wspthnfi 27060 wspthnonfi 27063 clwwlknfi 27195 qerclwwlknfi 27225 clwlknon2num 27550 numclwlk1lem2 27552 fsumiunle 29905 hashreprin 31028 reprfi2 31031 hgt750lema 31065 tgoldbachgtde 31068 fprodcnlem 40352 cnrefiisplem 40576 sge0uzfsumgt 41182 hoidmvlelem1 41333 hoidmvlelem2 41334 hoidmvlelem3 41335 hoidmvlelem4 41336 hspmbllem1 41364 |
Copyright terms: Public domain | W3C validator |