MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssextss Structured version   Visualization version   GIF version

Theorem ssextss 5072
Description: An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.)
Assertion
Ref Expression
ssextss (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssextss
StepHypRef Expression
1 sspwb 5067 . 2 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
2 dfss2 3733 . 2 (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
3 selpw 4310 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
4 selpw 4310 . . . 4 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
53, 4imbi12i 339 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ (𝑥𝐴𝑥𝐵))
65albii 1896 . 2 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
71, 2, 63bitri 286 1 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1630  wcel 2140  wss 3716  𝒫 cpw 4303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pr 5056
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-v 3343  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-pw 4305  df-sn 4323  df-pr 4325
This theorem is referenced by:  ssext  5073  nssss  5074
  Copyright terms: Public domain W3C validator