![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssexg | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
ssexg | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3660 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | imbi1d 330 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ⊆ 𝑥 → 𝐴 ∈ V) ↔ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V))) |
3 | vex 3234 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 4835 | . . 3 ⊢ (𝐴 ⊆ 𝑥 → 𝐴 ∈ V) |
5 | 2, 4 | vtoclg 3297 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
6 | 5 | impcom 445 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-in 3614 df-ss 3621 |
This theorem is referenced by: ssexd 4838 prcssprc 4839 difexg 4841 rabexg 4844 elssabg 4849 elpw2g 4857 abssexg 4881 snexALT 4882 sess1 5111 sess2 5112 riinint 5414 resexg 5477 trsuc 5848 ordsssuc2 5852 mptexg 6525 mptexgf 6526 isofr2 6634 ofres 6955 brrpssg 6981 unexb 7000 xpexg 7002 abnexg 7006 difex2 7011 uniexr 7014 dmexg 7139 rnexg 7140 resiexg 7144 imaexg 7145 exse2 7147 cnvexg 7154 coexg 7159 fabexg 7164 f1oabexg 7167 resfunexgALT 7171 cofunexg 7172 fnexALT 7174 f1dmex 7178 oprabexd 7197 mpt2exxg 7289 suppfnss 7365 tposexg 7411 tz7.48-3 7584 oaabs 7769 erex 7811 mapex 7905 pmvalg 7910 elpmg 7915 elmapssres 7924 pmss12g 7926 ralxpmap 7949 ixpexg 7974 ssdomg 8043 fiprc 8080 domunsncan 8101 infensuc 8179 pssnn 8219 unbnn 8257 fodomfi 8280 fival 8359 fiss 8371 dffi3 8378 hartogslem2 8489 card2on 8500 wdomima2g 8532 unxpwdom2 8534 unxpwdom 8535 harwdom 8536 oemapvali 8619 ackbij1lem11 9090 cofsmo 9129 ssfin4 9170 fin23lem11 9177 ssfin2 9180 ssfin3ds 9190 isfin1-3 9246 hsmex3 9294 axdc2lem 9308 ac6num 9339 ttukeylem1 9369 dmct 9384 ondomon 9423 fpwwe2lem3 9493 fpwwe2lem12 9501 fpwwe2lem13 9502 canthwe 9511 wuncss 9605 genpv 9859 genpdm 9862 hashss 13235 hashf1lem1 13277 wrdexg 13347 wrdexb 13348 shftfval 13854 o1of2 14387 o1rlimmul 14393 isercolllem2 14440 isstruct2 15914 ressval3d 15984 ressabs 15986 prdsbas 16164 fnmrc 16314 mrcfval 16315 isacs1i 16365 mreacs 16366 isssc 16527 ipolerval 17203 ress0g 17366 symgbas 17846 sylow2a 18080 islbs3 19203 toponsspwpw 20774 basdif0 20805 tgval 20807 eltg 20809 eltg2 20810 tgss 20820 basgen2 20841 2basgen 20842 bastop1 20845 topnex 20848 resttopon 21013 restabs 21017 restcld 21024 restfpw 21031 restcls 21033 restntr 21034 ordtbas2 21043 ordtbas 21044 lmfval 21084 cnrest 21137 cmpcov 21240 cmpsublem 21250 cmpsub 21251 2ndcomap 21309 islocfin 21368 txss12 21456 ptrescn 21490 trfbas2 21694 trfbas 21695 isfildlem 21708 snfbas 21717 trfil1 21737 trfil2 21738 trufil 21761 ssufl 21769 hauspwpwf1 21838 ustval 22053 metrest 22376 cnheibor 22801 metcld2 23151 bcthlem1 23167 mbfimaopn2 23469 0pledm 23485 dvbss 23710 dvreslem 23718 dvres2lem 23719 dvcnp2 23728 dvaddbr 23746 dvmulbr 23747 dvcnvrelem2 23826 elply2 23997 plyf 23999 plyss 24000 elplyr 24002 plyeq0lem 24011 plyeq0 24012 plyaddlem 24016 plymullem 24017 dgrlem 24030 coeidlem 24038 ulmcn 24198 pserulm 24221 rabexgfGS 29466 abrexdomjm 29471 aciunf1 29591 ress1r 29917 pcmplfin 30055 metidval 30061 indval 30203 sigagenss 30340 measval 30389 omsfval 30484 omssubaddlem 30489 omssubadd 30490 elcarsg 30495 carsggect 30508 erdsze2lem1 31311 erdsze2lem2 31312 cvxpconn 31350 elmsta 31571 dfon2lem3 31814 altxpexg 32210 ivthALT 32455 filnetlem3 32500 bj-restsnss 33161 bj-restsnss2 33162 bj-restb 33172 bj-restuni2 33176 abrexdom 33655 sdclem2 33668 sdclem1 33669 brssr 34391 elrfirn 37575 pwssplit4 37976 hbtlem1 38010 hbtlem7 38012 rabexgf 39497 wessf1ornlem 39685 disjinfi 39694 dvnprodlem1 40479 dvnprodlem2 40480 qndenserrnbllem 40832 sge0ss 40947 psmeasurelem 41005 caragensplit 41035 omeunile 41040 caragenuncl 41048 omeunle 41051 omeiunlempt 41055 carageniuncllem2 41057 mpt2exxg2 42441 gsumlsscl 42489 lincellss 42540 |
Copyright terms: Public domain | W3C validator |