![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 4814 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
ssex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3621 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 2 | inex2 4833 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | eleq1 2718 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
5 | 3, 4 | mpbii 223 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
6 | 1, 5 | sylbi 207 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∩ cin 3606 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-in 3614 df-ss 3621 |
This theorem is referenced by: ssexi 4836 ssexg 4837 intex 4850 moabex 4957 ixpiunwdom 8537 omex 8578 tcss 8658 bndrank 8742 scottex 8786 aceq3lem 8981 cfslb 9126 dcomex 9307 axdc2lem 9308 grothpw 9686 grothpwex 9687 grothomex 9689 elnp 9847 negfi 11009 hashfacen 13276 limsuple 14253 limsuplt 14254 limsupbnd1 14257 o1add2 14398 o1mul2 14399 o1sub2 14400 o1dif 14404 caucvgrlem 14447 fsumo1 14588 lcmfval 15381 lcmf0val 15382 unbenlem 15659 ressbas2 15978 prdsval 16162 prdsbas 16164 rescbas 16536 reschom 16537 rescco 16539 acsmapd 17225 issstrmgm 17299 issubmnd 17365 eqgfval 17689 dfod2 18027 ablfac1b 18515 islinds2 20200 pmatcollpw3lem 20636 2basgen 20842 prdstopn 21479 ressust 22115 rectbntr0 22682 elcncf 22739 cncfcnvcn 22771 cmsss 23193 ovolctb2 23306 limcfval 23681 ellimc2 23686 limcflf 23690 limcres 23695 limcun 23704 dvfval 23706 lhop2 23823 taylfval 24158 ulmval 24179 xrlimcnp 24740 axtgcont1 25412 fpwrelmap 29636 ressnm 29779 ressprs 29783 ordtrestNEW 30095 ddeval1 30425 ddeval0 30426 carsgclctunlem3 30510 bnj849 31121 msrval 31561 mclsval 31586 brsset 32121 isfne4 32460 refssfne 32478 topjoin 32485 bj-snglex 33086 mblfinlem3 33578 filbcmb 33665 cnpwstotbnd 33726 ismtyval 33729 ispsubsp 35349 ispsubclN 35541 isnumbasgrplem2 37991 rtrclex 38241 brmptiunrelexpd 38292 iunrelexp0 38311 mulcncff 40399 subcncff 40411 addcncff 40415 cncfuni 40417 divcncff 40422 etransclem1 40770 etransclem4 40773 etransclem13 40782 isvonmbl 41173 issubmgm2 42115 linccl 42528 ellcoellss 42549 elbigolo1 42676 |
Copyright terms: Public domain | W3C validator |