![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssequn2 | Structured version Visualization version GIF version |
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
ssequn2 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 3927 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
2 | uncom 3901 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
3 | 2 | eqeq1i 2766 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
4 | 1, 3 | bitri 264 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 ∪ cun 3714 ⊆ wss 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-v 3343 df-un 3721 df-in 3723 df-ss 3730 |
This theorem is referenced by: unabs 3998 tppreqb 4482 pwssun 5171 pwundif 5172 relresfld 5824 ordssun 5989 ordequn 5990 oneluni 6002 fsnunf 6617 sorpssun 7111 ordunpr 7193 fodomr 8279 enp1ilem 8362 pwfilem 8428 brwdom2 8646 sucprcreg 8674 dfacfin7 9434 hashbclem 13449 incexclem 14788 ramub1lem1 15953 ramub1lem2 15954 mreexmrid 16526 lspun0 19234 lbsextlem4 19384 cldlp 21177 ordtuni 21217 lfinun 21551 cldsubg 22136 trust 22255 nulmbl2 23525 limcmpt2 23868 cnplimc 23871 dvreslem 23893 dvaddbr 23921 dvmulbr 23922 lhop 23999 plypf1 24188 coeeulem 24200 coeeu 24201 coef2 24207 rlimcnp 24913 ex-un 27614 shs0i 28639 chj0i 28645 disjun0 29737 ffsrn 29835 difioo 29875 eulerpartlemt 30764 subfacp1lem1 31490 cvmscld 31584 mthmpps 31808 refssfne 32681 topjoin 32688 poimirlem3 33744 poimirlem28 33769 rntrclfvOAI 37775 istopclsd 37784 nacsfix 37796 diophrw 37843 clcnvlem 38451 cnvrcl0 38453 dmtrcl 38455 rntrcl 38456 iunrelexp0 38515 dmtrclfvRP 38543 rntrclfv 38545 cotrclrcl 38555 clsk3nimkb 38859 limciccioolb 40375 limcicciooub 40391 ioccncflimc 40620 icocncflimc 40624 stoweidlem44 40783 dirkercncflem3 40844 fourierdlem62 40907 ismeannd 41206 |
Copyright terms: Public domain | W3C validator |