![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssequn1 | Structured version Visualization version GIF version |
Description: A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ssequn1 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 212 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
2 | pm4.72 956 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | |
3 | elun 3861 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
4 | 3 | bibi1i 327 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
5 | 1, 2, 4 | 3bitr4i 292 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
6 | 5 | albii 1860 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) |
7 | dfss2 3697 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
8 | dfcleq 2718 | . 2 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4i 292 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∀wal 1594 = wceq 1596 ∈ wcel 2103 ∪ cun 3678 ⊆ wss 3680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-v 3306 df-un 3685 df-in 3687 df-ss 3694 |
This theorem is referenced by: ssequn2 3894 undif 4157 uniop 5081 pwssun 5124 unisuc 5914 ordssun 5940 ordequn 5941 onun2i 5956 funiunfv 6621 sorpssun 7061 ordunpr 7143 onuninsuci 7157 domss2 8235 sucdom2 8272 findcard2s 8317 rankopb 8828 ranksuc 8841 kmlem11 9095 fin1a2lem10 9344 trclublem 13856 trclubi 13857 trclub 13859 reltrclfv 13878 modfsummods 14645 cvgcmpce 14670 mreexexlem3d 16429 dprd2da 18562 dpjcntz 18572 dpjdisj 18573 dpjlsm 18574 dpjidcl 18578 ablfac1eu 18593 perfcls 21292 dfconn2 21345 comppfsc 21458 llycmpkgen2 21476 trfil2 21813 fixufil 21848 tsmsres 22069 ustssco 22140 ustuqtop1 22167 xrge0gsumle 22758 volsup 23445 mbfss 23533 itg2cnlem2 23649 iblss2 23692 vieta1lem2 24186 amgm 24837 wilthlem2 24915 ftalem3 24921 rpvmasum2 25321 iuninc 29607 hgt750lemb 30964 rankaltopb 32313 hfun 32512 nacsfix 37694 fvnonrel 38322 rclexi 38341 rtrclex 38343 trclubgNEW 38344 trclubNEW 38345 dfrtrcl5 38355 trrelsuperrel2dg 38382 iunrelexp0 38413 corcltrcl 38450 isotone1 38765 aacllem 42977 |
Copyright terms: Public domain | W3C validator |