![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sseqfn | Structured version Visualization version GIF version |
Description: A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) |
Ref | Expression |
---|---|
sseqval.1 | ⊢ (𝜑 → 𝑆 ∈ V) |
sseqval.2 | ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
sseqval.3 | ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) |
sseqval.4 | ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
Ref | Expression |
---|---|
sseqfn | ⊢ (𝜑 → (𝑀seqstr𝐹) Fn ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) | |
2 | wrdfn 13426 | . . . 4 ⊢ (𝑀 ∈ Word 𝑆 → 𝑀 Fn (0..^(♯‘𝑀))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 Fn (0..^(♯‘𝑀))) |
4 | fvex 6314 | . . . . . 6 ⊢ (𝑥‘((♯‘𝑥) − 1)) ∈ V | |
5 | df-lsw 13407 | . . . . . 6 ⊢ lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1))) | |
6 | 4, 5 | fnmpti 6135 | . . . . 5 ⊢ lastS Fn V |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → lastS Fn V) |
8 | lencl 13431 | . . . . . 6 ⊢ (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℕ0) | |
9 | 8 | nn0zd 11593 | . . . . 5 ⊢ (𝑀 ∈ Word 𝑆 → (♯‘𝑀) ∈ ℤ) |
10 | seqfn 12928 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℤ → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀))) | |
11 | 1, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀))) |
12 | ssv 3731 | . . . . 5 ⊢ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V) |
14 | fnco 6112 | . . . 4 ⊢ (( lastS Fn V ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) Fn (ℤ≥‘(♯‘𝑀)) ∧ ran seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})) ⊆ V) → ( lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀))) | |
15 | 7, 11, 13, 14 | syl3anc 1439 | . . 3 ⊢ (𝜑 → ( lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀))) |
16 | fzouzdisj 12619 | . . . 4 ⊢ ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅ | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅) |
18 | fnun 6110 | . . 3 ⊢ (((𝑀 Fn (0..^(♯‘𝑀)) ∧ ( lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))) Fn (ℤ≥‘(♯‘𝑀))) ∧ ((0..^(♯‘𝑀)) ∩ (ℤ≥‘(♯‘𝑀))) = ∅) → (𝑀 ∪ ( lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})))) Fn ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) | |
19 | 3, 15, 17, 18 | syl21anc 1438 | . 2 ⊢ (𝜑 → (𝑀 ∪ ( lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})))) Fn ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
20 | sseqval.1 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) | |
21 | sseqval.3 | . . . 4 ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) | |
22 | sseqval.4 | . . . 4 ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) | |
23 | 20, 1, 21, 22 | sseqval 30680 | . . 3 ⊢ (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ ( lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))))) |
24 | nn0uz 11836 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
25 | elnn0uz 11839 | . . . . . 6 ⊢ ((♯‘𝑀) ∈ ℕ0 ↔ (♯‘𝑀) ∈ (ℤ≥‘0)) | |
26 | fzouzsplit 12618 | . . . . . 6 ⊢ ((♯‘𝑀) ∈ (ℤ≥‘0) → (ℤ≥‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) | |
27 | 25, 26 | sylbi 207 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℕ0 → (ℤ≥‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
28 | 1, 8, 27 | 3syl 18 | . . . 4 ⊢ (𝜑 → (ℤ≥‘0) = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
29 | 24, 28 | syl5eq 2770 | . . 3 ⊢ (𝜑 → ℕ0 = ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀)))) |
30 | 23, 29 | fneq12d 6096 | . 2 ⊢ (𝜑 → ((𝑀seqstr𝐹) Fn ℕ0 ↔ (𝑀 ∪ ( lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)})))) Fn ((0..^(♯‘𝑀)) ∪ (ℤ≥‘(♯‘𝑀))))) |
31 | 19, 30 | mpbird 247 | 1 ⊢ (𝜑 → (𝑀seqstr𝐹) Fn ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 Vcvv 3304 ∪ cun 3678 ∩ cin 3679 ⊆ wss 3680 ∅c0 4023 {csn 4285 × cxp 5216 ◡ccnv 5217 ran crn 5219 “ cima 5221 ∘ ccom 5222 Fn wfn 5996 ⟶wf 5997 ‘cfv 6001 (class class class)co 6765 ↦ cmpt2 6767 0cc0 10049 1c1 10050 − cmin 10379 ℕ0cn0 11405 ℤcz 11490 ℤ≥cuz 11800 ..^cfzo 12580 seqcseq 12916 ♯chash 13232 Word cword 13398 lastS clsw 13399 ++ cconcat 13400 〈“cs1 13401 seqstrcsseq 30675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-map 7976 df-pm 7977 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-card 8878 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-n0 11406 df-z 11491 df-uz 11801 df-fz 12441 df-fzo 12581 df-seq 12917 df-hash 13233 df-word 13406 df-lsw 13407 df-s1 13409 df-sseq 30676 |
This theorem is referenced by: sseqfres 30685 |
Copyright terms: Public domain | W3C validator |