![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sseq0 | Structured version Visualization version GIF version |
Description: A subclass of an empty class is empty. (Contributed by NM, 7-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
sseq0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3774 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅)) | |
2 | ss0 4116 | . . 3 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
3 | 1, 2 | syl6bi 243 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ⊆ 𝐵 → 𝐴 = ∅)) |
4 | 3 | impcom 394 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ⊆ wss 3721 ∅c0 4061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-v 3351 df-dif 3724 df-in 3728 df-ss 3735 df-nul 4062 |
This theorem is referenced by: ssn0 4118 ssdifin0 4190 disjxiun 4781 undom 8203 fieq0 8482 infdifsn 8717 cantnff 8734 tc00 8787 hashun3 13374 strlemor1OLD 16176 strleun 16179 xpsc0 16427 xpsc1 16428 dmdprdsplit2lem 18651 2idlval 19447 opsrle 19689 pf1rcl 19927 ocvval 20227 pjfval 20266 en2top 21009 nrmsep 21381 isnrm3 21383 regsep2 21400 xkohaus 21676 kqdisj 21755 regr1lem 21762 alexsublem 22067 reconnlem1 22848 metdstri 22873 iundisj2 23536 0clwlk0 27309 disjxpin 29733 iundisj2f 29735 iundisj2fi 29890 cvmsss2 31588 cldbnd 32652 cntotbnd 33920 mapfzcons1 37799 onfrALTlem2 39280 onfrALTlem2VD 39641 nnuzdisj 40081 |
Copyright terms: Public domain | W3C validator |