![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifsym | Structured version Visualization version GIF version |
Description: Symmetric class differences for subclasses. (Contributed by AV, 3-Jan-2022.) |
Ref | Expression |
---|---|
ssdifsym | ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐵 = (𝑉 ∖ 𝐴) ↔ 𝐴 = (𝑉 ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifim 3970 | . . . 4 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) | |
2 | 1 | ex 449 | . . 3 ⊢ (𝐴 ⊆ 𝑉 → (𝐵 = (𝑉 ∖ 𝐴) → 𝐴 = (𝑉 ∖ 𝐵))) |
3 | 2 | adantr 472 | . 2 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐵 = (𝑉 ∖ 𝐴) → 𝐴 = (𝑉 ∖ 𝐵))) |
4 | ssdifim 3970 | . . . 4 ⊢ ((𝐵 ⊆ 𝑉 ∧ 𝐴 = (𝑉 ∖ 𝐵)) → 𝐵 = (𝑉 ∖ 𝐴)) | |
5 | 4 | ex 449 | . . 3 ⊢ (𝐵 ⊆ 𝑉 → (𝐴 = (𝑉 ∖ 𝐵) → 𝐵 = (𝑉 ∖ 𝐴))) |
6 | 5 | adantl 473 | . 2 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐴 = (𝑉 ∖ 𝐵) → 𝐵 = (𝑉 ∖ 𝐴))) |
7 | 3, 6 | impbid 202 | 1 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐵 = (𝑉 ∖ 𝐴) ↔ 𝐴 = (𝑉 ∖ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∖ cdif 3677 ⊆ wss 3680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rab 3023 df-v 3306 df-dif 3683 df-in 3687 df-ss 3694 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |