![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifim | Structured version Visualization version GIF version |
Description: Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022.) |
Ref | Expression |
---|---|
ssdifim | ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss4 3891 | . . 3 ⊢ (𝐴 ⊆ 𝑉 ↔ (𝑉 ∖ (𝑉 ∖ 𝐴)) = 𝐴) | |
2 | eqcom 2658 | . . 3 ⊢ ((𝑉 ∖ (𝑉 ∖ 𝐴)) = 𝐴 ↔ 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴))) | |
3 | 1, 2 | sylbb 209 | . 2 ⊢ (𝐴 ⊆ 𝑉 → 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴))) |
4 | difeq2 3755 | . . 3 ⊢ (𝐵 = (𝑉 ∖ 𝐴) → (𝑉 ∖ 𝐵) = (𝑉 ∖ (𝑉 ∖ 𝐴))) | |
5 | 4 | eqcomd 2657 | . 2 ⊢ (𝐵 = (𝑉 ∖ 𝐴) → (𝑉 ∖ (𝑉 ∖ 𝐴)) = (𝑉 ∖ 𝐵)) |
6 | 3, 5 | sylan9eq 2705 | 1 ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∖ cdif 3604 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 df-dif 3610 df-in 3614 df-ss 3621 |
This theorem is referenced by: ssdifsym 3896 frgrwopregbsn 27297 |
Copyright terms: Public domain | W3C validator |