![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifeq0 | Structured version Visualization version GIF version |
Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.) |
Ref | Expression |
---|---|
ssdifeq0 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 3953 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
2 | ssdifin0 4182 | . . 3 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) → (𝐴 ∩ 𝐴) = ∅) | |
3 | 1, 2 | syl5eqr 2796 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) → 𝐴 = ∅) |
4 | 0ss 4103 | . . 3 ⊢ ∅ ⊆ (𝐵 ∖ ∅) | |
5 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
6 | difeq2 3853 | . . . 4 ⊢ (𝐴 = ∅ → (𝐵 ∖ 𝐴) = (𝐵 ∖ ∅)) | |
7 | 5, 6 | sseq12d 3763 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ ∅ ⊆ (𝐵 ∖ ∅))) |
8 | 4, 7 | mpbiri 248 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ⊆ (𝐵 ∖ 𝐴)) |
9 | 3, 8 | impbii 199 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1620 ∖ cdif 3700 ∩ cin 3702 ⊆ wss 3703 ∅c0 4046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rab 3047 df-v 3330 df-dif 3706 df-in 3710 df-ss 3717 df-nul 4047 |
This theorem is referenced by: disjdifprg 29666 measxun2 30553 measssd 30558 pmeasmono 30666 |
Copyright terms: Public domain | W3C validator |