![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version |
Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 3778. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssdif 3778 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3604 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-in 3614 df-ss 3621 |
This theorem is referenced by: ssdif2d 3782 domunsncan 8101 fin1a2lem13 9272 seqcoll2 13287 rpnnen2lem11 14997 coprmprod 15422 mrieqv2d 16346 mrissmrid 16348 mreexexlem4d 16354 acsfiindd 17224 lsppratlem3 19197 lsppratlem4 19198 f1lindf 20209 lpss3 20996 lpcls 21216 fin1aufil 21783 rrxmval 23234 rrxmetlem 23236 uniioombllem3 23399 i1fmul 23508 itg1addlem4 23511 itg1climres 23526 limciun 23703 ig1peu 23976 ig1pdvds 23981 fusgreghash2wspv 27315 indsumin 30212 sitgclg 30532 mthmpps 31605 poimirlem11 33550 poimirlem12 33551 poimirlem15 33554 dochfln0 37083 lcfl6 37106 lcfrlem16 37164 hdmaprnlem4N 37462 caragendifcl 41049 |
Copyright terms: Public domain | W3C validator |