![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version |
Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 439 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 3617 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | xchbinxr 324 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
4 | 3 | albii 1787 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
5 | dfss2 3624 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | eq0 3962 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 292 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 ⊆ wss 3607 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-dif 3610 df-in 3614 df-ss 3621 df-nul 3949 |
This theorem is referenced by: difn0 3976 pssdifn0 3977 difid 3981 vdif0 4070 difrab0eq 4071 difin0 4074 symdifv 4630 wfi 5751 ordintdif 5812 dffv2 6310 fndifnfp 6483 tfi 7095 peano5 7131 wfrlem8 7467 wfrlem16 7475 tz7.49 7585 oe0m1 7646 sdomdif 8149 php3 8187 sucdom2 8197 isinf 8214 unxpwdom2 8534 fin23lem26 9185 fin23lem21 9199 fin1a2lem13 9272 zornn0g 9365 fpwwe2lem13 9502 fpwwe2 9503 isumltss 14624 rpnnen2lem12 14998 symgsssg 17933 symgfisg 17934 psgnunilem5 17960 lspsnat 19193 lsppratlem6 19200 lspprat 19201 lbsextlem4 19209 opsrtoslem2 19533 cnsubrg 19854 0ntr 20923 cmpfi 21259 dfconn2 21270 filconn 21734 cfinfil 21744 ufileu 21770 alexsublem 21895 ptcmplem2 21904 ptcmplem3 21905 restmetu 22422 reconnlem1 22676 bcthlem5 23171 itg10 23500 limcnlp 23687 upgrex 26032 uvtx01vtx 26346 uvtxa01vtx0OLD 26348 ex-dif 27410 strlem1 29237 difininv 29480 difioo 29672 baselcarsg 30496 difelcarsg 30500 sibfof 30530 sitg0 30536 chtvalz 30835 frpoind 31865 frind 31868 noextendseq 31945 onsucconni 32561 topdifinfeq 33328 fdc 33671 setindtr 37908 relnonrel 38210 caragenunidm 41043 |
Copyright terms: Public domain | W3C validator |