![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdif | Structured version Visualization version GIF version |
Description: Difference law for subsets. (Contributed by NM, 28-May-1998.) |
Ref | Expression |
---|---|
ssdif | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3738 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 589 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) |
3 | eldif 3725 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)) | |
4 | eldif 3725 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 285 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐶) → 𝑥 ∈ (𝐵 ∖ 𝐶))) |
6 | 5 | ssrdv 3750 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 2139 ∖ cdif 3712 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-dif 3718 df-in 3722 df-ss 3729 |
This theorem is referenced by: ssdifd 3889 php 8309 pssnn 8343 fin1a2lem13 9426 axcclem 9471 isercolllem3 14596 mvdco 18065 dprdres 18627 dpjidcl 18657 ablfac1eulem 18671 lspsnat 19347 lbsextlem2 19361 lbsextlem3 19362 mplmonmul 19666 cnsubdrglem 19999 clsconn 21435 2ndcdisj2 21462 kqdisj 21737 nulmbl2 23504 i1f1 23656 itg11 23657 itg1climres 23680 limcresi 23848 dvreslem 23872 dvres2lem 23873 dvaddbr 23900 dvmulbr 23901 lhop 23978 elqaa 24276 difres 29720 imadifxp 29721 xrge00 29995 eulerpartlemmf 30746 eulerpartlemgf 30750 bj-2upln1upl 33318 mblfinlem3 33761 mblfinlem4 33762 ismblfin 33763 cnambfre 33771 divrngidl 34140 cntzsdrg 38274 radcnvrat 39015 fourierdlem62 40888 |
Copyright terms: Public domain | W3C validator |