Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdec Structured version   Visualization version   GIF version

Theorem ssdec 39579
 Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
ssdec.1 (𝜑𝑁 ∈ (ℤ𝑀))
ssdec.2 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
Assertion
Ref Expression
ssdec (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))
Distinct variable groups:   𝑚,𝐹   𝑚,𝑀   𝑚,𝑁   𝜑,𝑚

Proof of Theorem ssdec
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ssdec.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 11730 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
4 eluzelz 11735 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
51, 4syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
63, 5jca 553 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
7 eluzle 11738 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
81, 7syl 17 . . . 4 (𝜑𝑀𝑁)
95zred 11520 . . . . 5 (𝜑𝑁 ∈ ℝ)
109leidd 10632 . . . 4 (𝜑𝑁𝑁)
115, 8, 103jca 1261 . . 3 (𝜑 → (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁))
126, 11jca 553 . 2 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)))
13 fveq2 6229 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1413sseq1d 3665 . . . 4 (𝑛 = 𝑀 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑀) ⊆ (𝐹𝑀)))
1514imbi2d 329 . . 3 (𝑛 = 𝑀 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))))
16 fveq2 6229 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1716sseq1d 3665 . . . 4 (𝑛 = 𝑚 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑚) ⊆ (𝐹𝑀)))
1817imbi2d 329 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀))))
19 fveq2 6229 . . . . 5 (𝑛 = (𝑚 + 1) → (𝐹𝑛) = (𝐹‘(𝑚 + 1)))
2019sseq1d 3665 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀)))
2120imbi2d 329 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))))
22 fveq2 6229 . . . . 5 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
2322sseq1d 3665 . . . 4 (𝑛 = 𝑁 → ((𝐹𝑛) ⊆ (𝐹𝑀) ↔ (𝐹𝑁) ⊆ (𝐹𝑀)))
2423imbi2d 329 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝐹𝑛) ⊆ (𝐹𝑀)) ↔ (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))))
25 ssid 3657 . . . . 5 (𝐹𝑀) ⊆ (𝐹𝑀)
2625a1i 11 . . . 4 (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀))
2726a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → (𝜑 → (𝐹𝑀) ⊆ (𝐹𝑀)))
28 simpr 476 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝜑)
29 simplll 813 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀 ∈ ℤ)
30 simplr1 1123 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ ℤ)
31 simplr2 1124 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑀𝑚)
3229, 30, 313jca 1261 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
33 eluz2 11731 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀𝑚))
3432, 33sylibr 224 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (ℤ𝑀))
35 simpllr 815 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑁 ∈ ℤ)
36 simplr3 1125 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 < 𝑁)
3734, 35, 363jca 1261 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
38 elfzo2 12512 . . . . . . . 8 (𝑚 ∈ (𝑀..^𝑁) ↔ (𝑚 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝑚 < 𝑁))
3937, 38sylibr 224 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → 𝑚 ∈ (𝑀..^𝑁))
40 ssdec.2 . . . . . . 7 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
4128, 39, 40syl2anc 694 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
42413adant2 1100 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑚))
43 simpr 476 . . . . . . 7 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → 𝜑)
44 simpl 472 . . . . . . 7 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)))
45 pm3.35 610 . . . . . . 7 ((𝜑 ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀))) → (𝐹𝑚) ⊆ (𝐹𝑀))
4643, 44, 45syl2anc 694 . . . . . 6 (((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹𝑀))
47463adant1 1099 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹𝑚) ⊆ (𝐹𝑀))
4842, 47sstrd 3646 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) ∧ (𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) ∧ 𝜑) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))
49483exp 1283 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀𝑚𝑚 < 𝑁)) → ((𝜑 → (𝐹𝑚) ⊆ (𝐹𝑀)) → (𝜑 → (𝐹‘(𝑚 + 1)) ⊆ (𝐹𝑀))))
5015, 18, 21, 24, 27, 49fzind 11513 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑀𝑁𝑁𝑁)) → (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀)))
5112, 50mpcom 38 1 (𝜑 → (𝐹𝑁) ⊆ (𝐹𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ⊆ wss 3607   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  1c1 9975   + caddc 9977   < clt 10112   ≤ cle 10113  ℤcz 11415  ℤ≥cuz 11725  ..^cfzo 12504 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505 This theorem is referenced by:  meaiininclem  41021
 Copyright terms: Public domain W3C validator