MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssct Structured version   Visualization version   GIF version

Theorem ssct 8196
Description: Any subset of a countable set is countable. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Assertion
Ref Expression
ssct ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)

Proof of Theorem ssct
StepHypRef Expression
1 ctex 8123 . . . 4 (𝐵 ≼ ω → 𝐵 ∈ V)
2 ssdomg 8154 . . . 4 (𝐵 ∈ V → (𝐴𝐵𝐴𝐵))
31, 2syl 17 . . 3 (𝐵 ≼ ω → (𝐴𝐵𝐴𝐵))
43impcom 394 . 2 ((𝐴𝐵𝐵 ≼ ω) → 𝐴𝐵)
5 domtr 8161 . 2 ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
64, 5sylancom 568 1 ((𝐴𝐵𝐵 ≼ ω) → 𝐴 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 2144  Vcvv 3349  wss 3721   class class class wbr 4784  ωcom 7211  cdom 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-dom 8110
This theorem is referenced by:  measvuni  30611  measiuns  30614  sxbrsigalem1  30681  ssnct  39764  fzct  40106  fzoct  40113  salexct  41063  opnvonmbllem2  41361
  Copyright terms: Public domain W3C validator