MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscpwex Structured version   Visualization version   GIF version

Theorem sscpwex 16456
Description: An analogue of pwex 4839 for the subcategory subset relation: The collection of subcategory subsets of a given set 𝐽 is a set. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscpwex {cat 𝐽} ∈ V
Distinct variable group:   ,𝐽

Proof of Theorem sscpwex
Dummy variables 𝑠 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6663 . 2 (𝒫 ran 𝐽pm dom 𝐽) ∈ V
2 brssc 16455 . . . 4 (cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
3 simpl 473 . . . . . . . . . 10 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → 𝐽 Fn (𝑡 × 𝑡))
4 vex 3198 . . . . . . . . . . 11 𝑡 ∈ V
54, 4xpex 6947 . . . . . . . . . 10 (𝑡 × 𝑡) ∈ V
6 fnex 6466 . . . . . . . . . 10 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑡 × 𝑡) ∈ V) → 𝐽 ∈ V)
73, 5, 6sylancl 693 . . . . . . . . 9 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → 𝐽 ∈ V)
8 rnexg 7083 . . . . . . . . 9 (𝐽 ∈ V → ran 𝐽 ∈ V)
9 uniexg 6940 . . . . . . . . 9 (ran 𝐽 ∈ V → ran 𝐽 ∈ V)
10 pwexg 4841 . . . . . . . . 9 ( ran 𝐽 ∈ V → 𝒫 ran 𝐽 ∈ V)
117, 8, 9, 104syl 19 . . . . . . . 8 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → 𝒫 ran 𝐽 ∈ V)
12 fndm 5978 . . . . . . . . . 10 (𝐽 Fn (𝑡 × 𝑡) → dom 𝐽 = (𝑡 × 𝑡))
1312adantr 481 . . . . . . . . 9 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → dom 𝐽 = (𝑡 × 𝑡))
1413, 5syl6eqel 2707 . . . . . . . 8 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → dom 𝐽 ∈ V)
15 ss2ixp 7906 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) ⊆ 𝒫 ran 𝐽X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) ⊆ X𝑥 ∈ (𝑠 × 𝑠)𝒫 ran 𝐽)
16 fvssunirn 6204 . . . . . . . . . . . . 13 (𝐽𝑥) ⊆ ran 𝐽
17 sspwb 4908 . . . . . . . . . . . . 13 ((𝐽𝑥) ⊆ ran 𝐽 ↔ 𝒫 (𝐽𝑥) ⊆ 𝒫 ran 𝐽)
1816, 17mpbi 220 . . . . . . . . . . . 12 𝒫 (𝐽𝑥) ⊆ 𝒫 ran 𝐽
1918a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (𝑠 × 𝑠) → 𝒫 (𝐽𝑥) ⊆ 𝒫 ran 𝐽)
2015, 19mprg 2923 . . . . . . . . . 10 X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) ⊆ X𝑥 ∈ (𝑠 × 𝑠)𝒫 ran 𝐽
21 simprr 795 . . . . . . . . . 10 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))
2220, 21sseldi 3593 . . . . . . . . 9 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → X𝑥 ∈ (𝑠 × 𝑠)𝒫 ran 𝐽)
23 vex 3198 . . . . . . . . . 10 ∈ V
2423elixpconst 7901 . . . . . . . . 9 (X𝑥 ∈ (𝑠 × 𝑠)𝒫 ran 𝐽:(𝑠 × 𝑠)⟶𝒫 ran 𝐽)
2522, 24sylib 208 . . . . . . . 8 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → :(𝑠 × 𝑠)⟶𝒫 ran 𝐽)
26 elpwi 4159 . . . . . . . . . . 11 (𝑠 ∈ 𝒫 𝑡𝑠𝑡)
2726ad2antrl 763 . . . . . . . . . 10 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → 𝑠𝑡)
28 xpss12 5215 . . . . . . . . . 10 ((𝑠𝑡𝑠𝑡) → (𝑠 × 𝑠) ⊆ (𝑡 × 𝑡))
2927, 27, 28syl2anc 692 . . . . . . . . 9 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → (𝑠 × 𝑠) ⊆ (𝑡 × 𝑡))
3029, 13sseqtr4d 3634 . . . . . . . 8 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → (𝑠 × 𝑠) ⊆ dom 𝐽)
31 elpm2r 7860 . . . . . . . 8 (((𝒫 ran 𝐽 ∈ V ∧ dom 𝐽 ∈ V) ∧ (:(𝑠 × 𝑠)⟶𝒫 ran 𝐽 ∧ (𝑠 × 𝑠) ⊆ dom 𝐽)) → ∈ (𝒫 ran 𝐽pm dom 𝐽))
3211, 14, 25, 30, 31syl22anc 1325 . . . . . . 7 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))) → ∈ (𝒫 ran 𝐽pm dom 𝐽))
3332rexlimdvaa 3028 . . . . . 6 (𝐽 Fn (𝑡 × 𝑡) → (∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → ∈ (𝒫 ran 𝐽pm dom 𝐽)))
3433imp 445 . . . . 5 ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → ∈ (𝒫 ran 𝐽pm dom 𝐽))
3534exlimiv 1856 . . . 4 (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → ∈ (𝒫 ran 𝐽pm dom 𝐽))
362, 35sylbi 207 . . 3 (cat 𝐽 ∈ (𝒫 ran 𝐽pm dom 𝐽))
3736abssi 3669 . 2 {cat 𝐽} ⊆ (𝒫 ran 𝐽pm dom 𝐽)
381, 37ssexi 4794 1 {cat 𝐽} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1481  wex 1702  wcel 1988  {cab 2606  wrex 2910  Vcvv 3195  wss 3567  𝒫 cpw 4149   cuni 4427   class class class wbr 4644   × cxp 5102  dom cdm 5104  ran crn 5105   Fn wfn 5871  wf 5872  cfv 5876  (class class class)co 6635  pm cpm 7843  Xcixp 7893  cat cssc 16448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-pm 7845  df-ixp 7894  df-ssc 16451
This theorem is referenced by:  issubc  16476
  Copyright terms: Public domain W3C validator