Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscls Structured version   Visualization version   GIF version

Theorem sscls 21082
 Description: A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
sscls ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem sscls
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssintub 4647 . 2 𝑆 {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥}
2 clscld.1 . . 3 𝑋 = 𝐽
32clsval 21063 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆𝑥})
41, 3syl5sseqr 3795 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {crab 3054   ⊆ wss 3715  ∪ cuni 4588  ∩ cint 4627  ‘cfv 6049  Topctop 20920  Clsdccld 21042  clsccl 21044 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-top 20921  df-cld 21045  df-cls 21047 This theorem is referenced by:  iscld4  21091  elcls  21099  ntrcls0  21102  clslp  21174  restcls  21207  cncls2i  21296  nrmsep  21383  lpcls  21390  regsep2  21402  hauscmplem  21431  hauscmp  21432  clsconn  21455  conncompcld  21459  hausllycmp  21519  txcls  21629  ptclsg  21640  regr1lem  21764  kqreglem1  21766  kqreglem2  21767  kqnrmlem1  21768  kqnrmlem2  21769  fclscmpi  22054  flfcntr  22068  cnextfres  22094  clssubg  22133  tsmsid  22164  cnllycmp  22976  clsocv  23269  relcmpcmet  23335  bcthlem2  23342  bcthlem4  23344  limcnlp  23861  opnbnd  32647  opnregcld  32652  cldregopn  32653  heibor1lem  33939  heiborlem8  33948
 Copyright terms: Public domain W3C validator