MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssc1 Structured version   Visualization version   GIF version

Theorem ssc1 16688
Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
isssc.1 (𝜑𝐻 Fn (𝑆 × 𝑆))
isssc.2 (𝜑𝐽 Fn (𝑇 × 𝑇))
ssc1.3 (𝜑𝐻cat 𝐽)
Assertion
Ref Expression
ssc1 (𝜑𝑆𝑇)

Proof of Theorem ssc1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssc1.3 . . 3 (𝜑𝐻cat 𝐽)
2 isssc.1 . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
3 isssc.2 . . . 4 (𝜑𝐽 Fn (𝑇 × 𝑇))
4 sscrel 16680 . . . . . . 7 Rel ⊆cat
54brrelex2i 5299 . . . . . 6 (𝐻cat 𝐽𝐽 ∈ V)
61, 5syl 17 . . . . 5 (𝜑𝐽 ∈ V)
73ssclem 16686 . . . . 5 (𝜑 → (𝐽 ∈ V ↔ 𝑇 ∈ V))
86, 7mpbid 222 . . . 4 (𝜑𝑇 ∈ V)
92, 3, 8isssc 16687 . . 3 (𝜑 → (𝐻cat 𝐽 ↔ (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))))
101, 9mpbid 222 . 2 (𝜑 → (𝑆𝑇 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))
1110simpld 482 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 2145  wral 3061  Vcvv 3351  wss 3723   class class class wbr 4786   × cxp 5247   Fn wfn 6026  (class class class)co 6793  cat cssc 16674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-ixp 8063  df-ssc 16677
This theorem is referenced by:  ssctr  16692  ssceq  16693  subcss1  16709  issubc3  16716  subsubc  16720
  Copyright terms: Public domain W3C validator