![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssc1 | Structured version Visualization version GIF version |
Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
isssc.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
isssc.2 | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
ssc1.3 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
Ref | Expression |
---|---|
ssc1 | ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssc1.3 | . . 3 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
2 | isssc.1 | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
3 | isssc.2 | . . . 4 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | |
4 | sscrel 16680 | . . . . . . 7 ⊢ Rel ⊆cat | |
5 | 4 | brrelex2i 5299 | . . . . . 6 ⊢ (𝐻 ⊆cat 𝐽 → 𝐽 ∈ V) |
6 | 1, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
7 | 3 | ssclem 16686 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ V ↔ 𝑇 ∈ V)) |
8 | 6, 7 | mpbid 222 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ V) |
9 | 2, 3, 8 | isssc 16687 | . . 3 ⊢ (𝜑 → (𝐻 ⊆cat 𝐽 ↔ (𝑆 ⊆ 𝑇 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))) |
10 | 1, 9 | mpbid 222 | . 2 ⊢ (𝜑 → (𝑆 ⊆ 𝑇 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))) |
11 | 10 | simpld 482 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ∀wral 3061 Vcvv 3351 ⊆ wss 3723 class class class wbr 4786 × cxp 5247 Fn wfn 6026 (class class class)co 6793 ⊆cat cssc 16674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-ixp 8063 df-ssc 16677 |
This theorem is referenced by: ssctr 16692 ssceq 16693 subcss1 16709 issubc3 16716 subsubc 16720 |
Copyright terms: Public domain | W3C validator |