![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version |
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sseld 3735 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
3 | df-br 4797 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
4 | df-br 4797 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
5 | 2, 3, 4 | 3imtr4g 285 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2131 ⊆ wss 3707 〈cop 4319 class class class wbr 4796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-in 3714 df-ss 3721 df-br 4797 |
This theorem is referenced by: ssbr 4840 sess1 5226 brrelex12 5304 eqbrrdva 5439 ersym 7915 ertr 7918 fpwwe2lem6 9641 fpwwe2lem7 9642 fpwwe2lem9 9644 fpwwe2lem12 9647 fpwwe2lem13 9648 fpwwe2 9649 coss12d 13904 fthres2 16785 invfuc 16827 pospo 17166 dirref 17428 efgcpbl 18361 frgpuplem 18377 subrguss 18989 znleval 20097 ustref 22215 ustuqtop4 22241 metider 30238 mclsppslem 31779 fundmpss 31963 iunrelexpuztr 38505 frege96d 38535 frege91d 38537 frege98d 38539 frege124d 38547 |
Copyright terms: Public domain | W3C validator |