![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssabf | Structured version Visualization version GIF version |
Description: Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ssabf.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
ssabf | ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssabf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | abid2f 2820 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
3 | 2 | sseq1i 3662 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ⊆ {𝑥 ∣ 𝜑} ↔ 𝐴 ⊆ {𝑥 ∣ 𝜑}) |
4 | ss2ab 3703 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
5 | 3, 4 | bitr3i 266 | 1 ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 ∈ wcel 2030 {cab 2637 Ⅎwnfc 2780 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-in 3614 df-ss 3621 |
This theorem is referenced by: ssrabf 39612 |
Copyright terms: Public domain | W3C validator |