![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2rabi | Structured version Visualization version GIF version |
Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
ss2rabi.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
ss2rabi | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2rab 3811 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) | |
2 | ss2rabi.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
3 | 1, 2 | mprgbir 3057 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2131 {crab 3046 ⊆ wss 3707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rab 3051 df-in 3714 df-ss 3721 |
This theorem is referenced by: supub 8522 suplub 8523 card2on 8616 rankval4 8895 fin1a2lem12 9417 catlid 16537 catrid 16538 gsumval2 17473 lbsextlem3 19354 psrbagsn 19689 musum 25108 ppiub 25120 umgrupgr 26189 umgrislfupgr 26209 usgruspgr 26264 usgrislfuspgr 26270 disjxwwlksn 27014 clwwlknclwwlkdifnum 27093 clwwlknclwwlkdifnumOLD 27095 konigsbergssiedgw 27394 dlwwlknonclwlknonf1olem2 27517 omssubadd 30663 bj-unrab 33220 poimirlem26 33740 poimirlem27 33741 lclkrs2 37323 |
Copyright terms: Public domain | W3C validator |