![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version |
Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
Ref | Expression |
---|---|
ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ralrimiva 3104 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
3 | ss2rab 3819 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
4 | 2, 3 | sylibr 224 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ∀wral 3050 {crab 3054 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rab 3059 df-in 3722 df-ss 3729 |
This theorem is referenced by: rabssrabd 3830 sess1 5234 suppfnssOLD 7489 suppssov1 7496 suppssfv 7500 harword 8635 mrcss 16478 ablfac1b 18669 mptscmfsupp0 19130 lspss 19186 aspss 19534 dsmmacl 20287 dsmmsubg 20289 dsmmlss 20290 scmatdmat 20523 clsss 21060 lfinpfin 21529 qustgpopn 22124 metss2lem 22517 equivcau 23298 rrxmvallem 23387 ovolsslem 23452 itg2monolem1 23716 lgamucov 24963 sqff1o 25107 musum 25116 cusgrfilem1 26561 clwlknf1oclwwlknlem3 27227 clwwlknonclwlknonf1olem 27521 locfinreflem 30216 omsmon 30669 orvclteinc 30846 fin2solem 33708 poimirlem26 33748 poimirlem27 33749 cnambfre 33771 pclssN 35683 2polssN 35704 dihglblem3N 37086 dochss 37156 mapdordlem2 37428 nzss 39018 rmsuppss 42661 mndpsuppss 42662 scmsuppss 42663 |
Copyright terms: Public domain | W3C validator |