![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2abdv | Structured version Visualization version GIF version |
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) |
Ref | Expression |
---|---|
ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2abdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | alrimiv 1895 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
3 | ss2ab 3703 | . 2 ⊢ ({𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒} ↔ ∀𝑥(𝜓 → 𝜒)) | |
4 | 2, 3 | sylibr 224 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 {cab 2637 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-in 3614 df-ss 3621 |
This theorem is referenced by: intss 4530 ssopab2 5030 ssoprab2 6753 suppimacnvss 7350 suppimacnv 7351 ressuppss 7359 ss2ixp 7963 fiss 8371 tcss 8658 tcel 8659 infmap2 9078 cfub 9109 cflm 9110 cflecard 9113 clsslem 13769 cncmet 23165 plyss 24000 ofrn2 29570 sigaclci 30323 subfacp1lem6 31293 ss2mcls 31591 itg2addnclem 33591 sdclem1 33669 istotbnd3 33700 sstotbnd 33704 qsss1 34194 aomclem4 37944 hbtlem4 38013 hbtlem3 38014 rngunsnply 38060 iocinico 38114 |
Copyright terms: Public domain | W3C validator |