![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss0b | Structured version Visualization version GIF version |
Description: Any subset of the empty set is empty. Theorem 5 of [Suppes] p. 23 and its converse. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
ss0b | ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4080 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | eqss 3724 | . . 3 ⊢ (𝐴 = ∅ ↔ (𝐴 ⊆ ∅ ∧ ∅ ⊆ 𝐴)) | |
3 | 1, 2 | mpbiran2 992 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 ⊆ ∅) |
4 | 3 | bicomi 214 | 1 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1596 ⊆ wss 3680 ∅c0 4023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-v 3306 df-dif 3683 df-in 3687 df-ss 3694 df-nul 4024 |
This theorem is referenced by: ss0 4082 un00 4119 ssdisjOLD 4135 pw0 4451 fnsuppeq0 7443 cnfcom2lem 8711 card0 8897 kmlem5 9089 cf0 9186 fin1a2lem12 9346 mreexexlem3d 16429 efgval 18251 ppttop 20934 0nnei 21039 disjunsn 29635 isarchi 29966 filnetlem4 32603 coss0 34471 pnonsingN 35639 osumcllem4N 35665 resnonrel 38317 ntrneicls11 38807 ntrneikb 38811 sprsymrelfvlem 42167 |
Copyright terms: Public domain | W3C validator |