Step | Hyp | Ref
| Expression |
1 | | srgbinomlem.i |
. . 3
⊢ (𝜓 → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
2 | 1 | oveq1d 6829 |
. 2
⊢ (𝜓 → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐵)) |
3 | | srgbinom.s |
. . . 4
⊢ 𝑆 = (Base‘𝑅) |
4 | | eqid 2760 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
5 | | srgbinom.a |
. . . 4
⊢ + =
(+g‘𝑅) |
6 | | srgbinom.m |
. . . 4
⊢ × =
(.r‘𝑅) |
7 | | srgbinomlem.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ SRing) |
8 | | ovexd 6844 |
. . . 4
⊢ (𝜑 → (0...𝑁) ∈ V) |
9 | | srgbinomlem.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
10 | | simpl 474 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝜑) |
11 | | srgbinomlem.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
12 | | elfzelz 12555 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) |
13 | | bccl 13323 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑁C𝑘) ∈
ℕ0) |
14 | 11, 12, 13 | syl2an 495 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈
ℕ0) |
15 | | fznn0sub 12586 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → (𝑁 − 𝑘) ∈
ℕ0) |
16 | 15 | adantl 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈
ℕ0) |
17 | | elfznn0 12646 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
18 | 17 | adantl 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
19 | | srgbinom.t |
. . . . . 6
⊢ · =
(.g‘𝑅) |
20 | | srgbinom.g |
. . . . . 6
⊢ 𝐺 = (mulGrp‘𝑅) |
21 | | srgbinom.e |
. . . . . 6
⊢ ↑ =
(.g‘𝐺) |
22 | | srgbinomlem.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
23 | | srgbinomlem.c |
. . . . . 6
⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
24 | 3, 6, 19, 5, 20, 21, 7, 22, 9, 23, 11 | srgbinomlem2 18761 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁 − 𝑘) ∈ ℕ0 ∧ 𝑘 ∈ ℕ0))
→ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
25 | 10, 14, 16, 18, 24 | syl13anc 1479 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
26 | | eqid 2760 |
. . . . 5
⊢ (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
27 | | fzfid 12986 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
28 | | ovexd 6844 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ V) |
29 | | fvexd 6365 |
. . . . 5
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
30 | 26, 27, 28, 29 | fsuppmptdm 8453 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) finSupp (0g‘𝑅)) |
31 | 3, 4, 5, 6, 7, 8, 9, 25, 30 | srgsummulcr 18757 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐵))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐵)) |
32 | | srgcmn 18728 |
. . . . . 6
⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) |
33 | 7, 32 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CMnd) |
34 | | 1z 11619 |
. . . . . 6
⊢ 1 ∈
ℤ |
35 | 34 | a1i 11 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
36 | | 0zd 11601 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℤ) |
37 | 11 | nn0zd 11692 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
38 | 7 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑅 ∈ SRing) |
39 | 9 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐵 ∈ 𝑆) |
40 | 3, 6 | srgcl 18732 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐵) ∈ 𝑆) |
41 | 38, 25, 39, 40 | syl3anc 1477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐵) ∈ 𝑆) |
42 | | oveq2 6822 |
. . . . . . 7
⊢ (𝑘 = (𝑗 − 1) → (𝑁C𝑘) = (𝑁C(𝑗 − 1))) |
43 | | oveq2 6822 |
. . . . . . . . 9
⊢ (𝑘 = (𝑗 − 1) → (𝑁 − 𝑘) = (𝑁 − (𝑗 − 1))) |
44 | 43 | oveq1d 6829 |
. . . . . . . 8
⊢ (𝑘 = (𝑗 − 1) → ((𝑁 − 𝑘) ↑ 𝐴) = ((𝑁 − (𝑗 − 1)) ↑ 𝐴)) |
45 | | oveq1 6821 |
. . . . . . . 8
⊢ (𝑘 = (𝑗 − 1) → (𝑘 ↑ 𝐵) = ((𝑗 − 1) ↑ 𝐵)) |
46 | 44, 45 | oveq12d 6832 |
. . . . . . 7
⊢ (𝑘 = (𝑗 − 1) → (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) = (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) |
47 | 42, 46 | oveq12d 6832 |
. . . . . 6
⊢ (𝑘 = (𝑗 − 1) → ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = ((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵)))) |
48 | 47 | oveq1d 6829 |
. . . . 5
⊢ (𝑘 = (𝑗 − 1) → (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵)) |
49 | 3, 4, 33, 35, 36, 37, 41, 48 | gsummptshft 18556 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐵))) = (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵)))) |
50 | 11 | nn0cnd 11565 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℂ) |
51 | 50 | adantr 472 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑁 ∈ ℂ) |
52 | | elfzelz 12555 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑗 ∈ ℤ) |
53 | 52 | adantl 473 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑗 ∈ ℤ) |
54 | 53 | zcnd 11695 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑗 ∈ ℂ) |
55 | | 1cnd 10268 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 1 ∈
ℂ) |
56 | 51, 54, 55 | subsub3d 10634 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁 − (𝑗 − 1)) = ((𝑁 + 1) − 𝑗)) |
57 | 56 | oveq1d 6829 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁 − (𝑗 − 1)) ↑ 𝐴) = (((𝑁 + 1) − 𝑗) ↑ 𝐴)) |
58 | 57 | oveq1d 6829 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵)) = ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) |
59 | 58 | oveq2d 6830 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) = ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵)))) |
60 | 59 | oveq1d 6829 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵) = (((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵)) |
61 | 7 | adantr 472 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑅 ∈ SRing) |
62 | | peano2zm 11632 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℤ → (𝑗 − 1) ∈
ℤ) |
63 | 52, 62 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → (𝑗 − 1) ∈
ℤ) |
64 | | bccl 13323 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑗 − 1) ∈
ℤ) → (𝑁C(𝑗 − 1)) ∈
ℕ0) |
65 | 11, 63, 64 | syl2an 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁C(𝑗 − 1)) ∈
ℕ0) |
66 | 20 | srgmgp 18730 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
67 | 7, 66 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ Mnd) |
68 | 67 | adantr 472 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐺 ∈ Mnd) |
69 | | 0p1e1 11344 |
. . . . . . . . . . . . . . 15
⊢ (0 + 1) =
1 |
70 | 69 | oveq1i 6824 |
. . . . . . . . . . . . . 14
⊢ ((0 +
1)...(𝑁 + 1)) = (1...(𝑁 + 1)) |
71 | 70 | eleq2i 2831 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↔ 𝑗 ∈ (1...(𝑁 + 1))) |
72 | | fznn0sub 12586 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...(𝑁 + 1)) → ((𝑁 + 1) − 𝑗) ∈
ℕ0) |
73 | 72 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑗 ∈ (1...(𝑁 + 1)) → ((𝑁 + 1) − 𝑗) ∈
ℕ0)) |
74 | 71, 73 | syl5bi 232 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → ((𝑁 + 1) − 𝑗) ∈
ℕ0)) |
75 | 74 | imp 444 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁 + 1) − 𝑗) ∈
ℕ0) |
76 | 22 | adantr 472 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐴 ∈ 𝑆) |
77 | 20, 3 | mgpbas 18715 |
. . . . . . . . . . . 12
⊢ 𝑆 = (Base‘𝐺) |
78 | 77, 21 | mulgnn0cl 17779 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ ((𝑁 + 1) − 𝑗) ∈ ℕ0 ∧ 𝐴 ∈ 𝑆) → (((𝑁 + 1) − 𝑗) ↑ 𝐴) ∈ 𝑆) |
79 | 68, 75, 76, 78 | syl3anc 1477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁 + 1) − 𝑗) ↑ 𝐴) ∈ 𝑆) |
80 | | elfznn 12583 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...(𝑁 + 1)) → 𝑗 ∈ ℕ) |
81 | | nnm1nn0 11546 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → (𝑗 − 1) ∈
ℕ0) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...(𝑁 + 1)) → (𝑗 − 1) ∈
ℕ0) |
83 | 71, 82 | sylbi 207 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → (𝑗 − 1) ∈
ℕ0) |
84 | 83 | adantl 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑗 − 1) ∈
ℕ0) |
85 | 9 | adantr 472 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐵 ∈ 𝑆) |
86 | 77, 21 | mulgnn0cl 17779 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ (𝑗 − 1) ∈
ℕ0 ∧ 𝐵
∈ 𝑆) → ((𝑗 − 1) ↑ 𝐵) ∈ 𝑆) |
87 | 68, 84, 85, 86 | syl3anc 1477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑗 − 1) ↑ 𝐵) ∈ 𝑆) |
88 | 3, 19, 6 | srgmulgass 18751 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ SRing ∧ ((𝑁C(𝑗 − 1)) ∈ ℕ0 ∧
(((𝑁 + 1) − 𝑗) ↑ 𝐴) ∈ 𝑆 ∧ ((𝑗 − 1) ↑ 𝐵) ∈ 𝑆)) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵)) = ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵)))) |
89 | 61, 65, 79, 87, 88 | syl13anc 1479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵)) = ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵)))) |
90 | 89 | eqcomd 2766 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵))) |
91 | 90 | oveq1d 6829 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵) = ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵)) × 𝐵)) |
92 | | srgmnd 18729 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
93 | 7, 92 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ Mnd) |
94 | 93 | adantr 472 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑅 ∈ Mnd) |
95 | 3, 19 | mulgnn0cl 17779 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Mnd ∧ (𝑁C(𝑗 − 1)) ∈ ℕ0 ∧
(((𝑁 + 1) − 𝑗) ↑ 𝐴) ∈ 𝑆) → ((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) ∈ 𝑆) |
96 | 94, 65, 79, 95 | syl3anc 1477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) ∈ 𝑆) |
97 | 3, 6 | srgass 18733 |
. . . . . . . . 9
⊢ ((𝑅 ∈ SRing ∧ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) ∈ 𝑆 ∧ ((𝑗 − 1) ↑ 𝐵) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵)) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (((𝑗 − 1) ↑ 𝐵) × 𝐵))) |
98 | 61, 96, 87, 85, 97 | syl13anc 1479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵)) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (((𝑗 − 1) ↑ 𝐵) × 𝐵))) |
99 | 20, 6 | mgpplusg 18713 |
. . . . . . . . . . . 12
⊢ × =
(+g‘𝐺) |
100 | 77, 21, 99 | mulgnn0p1 17773 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ (𝑗 − 1) ∈
ℕ0 ∧ 𝐵
∈ 𝑆) → (((𝑗 − 1) + 1) ↑ 𝐵) = (((𝑗 − 1) ↑ 𝐵) × 𝐵)) |
101 | 100 | eqcomd 2766 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ (𝑗 − 1) ∈
ℕ0 ∧ 𝐵
∈ 𝑆) → (((𝑗 − 1) ↑ 𝐵) × 𝐵) = (((𝑗 − 1) + 1) ↑ 𝐵)) |
102 | 68, 84, 85, 101 | syl3anc 1477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑗 − 1) ↑ 𝐵) × 𝐵) = (((𝑗 − 1) + 1) ↑ 𝐵)) |
103 | 102 | oveq2d 6830 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (((𝑗 − 1) ↑ 𝐵) × 𝐵)) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (((𝑗 − 1) + 1) ↑ 𝐵))) |
104 | 52 | zcnd 11695 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑗 ∈ ℂ) |
105 | | 1cnd 10268 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → 1 ∈
ℂ) |
106 | 104, 105 | npcand 10608 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → ((𝑗 − 1) + 1) = 𝑗) |
107 | 106 | adantl 473 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑗 − 1) + 1) = 𝑗) |
108 | 107 | oveq1d 6829 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑗 − 1) + 1) ↑ 𝐵) = (𝑗 ↑ 𝐵)) |
109 | 108 | oveq2d 6830 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (((𝑗 − 1) + 1) ↑ 𝐵)) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) |
110 | 98, 103, 109 | 3eqtrd 2798 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × ((𝑗 − 1) ↑ 𝐵)) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) |
111 | 60, 91, 110 | 3eqtrd 2798 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) |
112 | 111 | mpteq2dva 4896 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵)) = (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵)))) |
113 | 112 | oveq2d 6830 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) ↑ 𝐴) × ((𝑗 − 1) ↑ 𝐵))) × 𝐵))) = (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))))) |
114 | | mpteq1 4889 |
. . . . . . . 8
⊢ (((0 +
1)...(𝑁 + 1)) = (1...(𝑁 + 1)) → (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) = (𝑗 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵)))) |
115 | 70, 114 | ax-mp 5 |
. . . . . . 7
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) = (𝑗 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) |
116 | | oveq1 6821 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → (𝑗 − 1) = (𝑘 − 1)) |
117 | 116 | oveq2d 6830 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑁C(𝑗 − 1)) = (𝑁C(𝑘 − 1))) |
118 | | oveq2 6822 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → ((𝑁 + 1) − 𝑗) = ((𝑁 + 1) − 𝑘)) |
119 | 118 | oveq1d 6829 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (((𝑁 + 1) − 𝑗) ↑ 𝐴) = (((𝑁 + 1) − 𝑘) ↑ 𝐴)) |
120 | 117, 119 | oveq12d 6832 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) = ((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴))) |
121 | | oveq1 6821 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (𝑗 ↑ 𝐵) = (𝑘 ↑ 𝐵)) |
122 | 120, 121 | oveq12d 6832 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵)) = (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵))) |
123 | 122 | cbvmptv 4902 |
. . . . . . 7
⊢ (𝑗 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) = (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵))) |
124 | 115, 123 | eqtri 2782 |
. . . . . 6
⊢ (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵))) = (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵))) |
125 | 124 | oveq2i 6825 |
. . . . 5
⊢ (𝑅 Σg
(𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵)))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵)))) |
126 | | fzfid 12986 |
. . . . . . . . 9
⊢ (𝜑 → (1...(𝑁 + 1)) ∈ Fin) |
127 | | simpl 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝜑) |
128 | | elfzelz 12555 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℤ) |
129 | | peano2zm 11632 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤ → (𝑘 − 1) ∈
ℤ) |
130 | 128, 129 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ) |
131 | | bccl 13323 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑘 − 1) ∈
ℤ) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
132 | 11, 130, 131 | syl2an 495 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
133 | | fznn0sub 12586 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
134 | 133 | adantl 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
135 | | elfznn 12583 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ) |
136 | 135 | nnnn0d 11563 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ0) |
137 | 136 | adantl 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℕ0) |
138 | 3, 6, 19, 5, 20, 21, 7, 22, 9, 23, 11 | srgbinomlem2 18761 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑁C(𝑘 − 1)) ∈ ℕ0 ∧
((𝑁 + 1) − 𝑘) ∈ ℕ0
∧ 𝑘 ∈
ℕ0)) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
139 | 127, 132,
134, 137, 138 | syl13anc 1479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
140 | 139 | ralrimiva 3104 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (1...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
141 | 3, 33, 126, 140 | gsummptcl 18586 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆) |
142 | 3, 5, 4 | mndlid 17532 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ (𝑅 Σg
(𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆) → ((0g‘𝑅) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
143 | 93, 141, 142 | syl2anc 696 |
. . . . . . 7
⊢ (𝜑 →
((0g‘𝑅)
+ (𝑅 Σg
(𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
144 | | 0nn0 11519 |
. . . . . . . . . . 11
⊢ 0 ∈
ℕ0 |
145 | 144 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℕ0) |
146 | | id 22 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝜑) |
147 | | 0z 11600 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℤ |
148 | 147, 34 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℤ ∧ 1 ∈ ℤ) |
149 | | zsubcl 11631 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈
ℤ) |
150 | 148, 149 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 − 1) ∈
ℤ) |
151 | | bccl 13323 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (0 − 1) ∈ ℤ) → (𝑁C(0 − 1)) ∈
ℕ0) |
152 | 11, 150, 151 | syl2anc 696 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁C(0 − 1)) ∈
ℕ0) |
153 | | nn0cn 11514 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
154 | | peano2cn 10420 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → (𝑁 + 1) ∈
ℂ) |
155 | 153, 154 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℂ) |
156 | 155 | subid1d 10593 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 0)
= (𝑁 + 1)) |
157 | | peano2nn0 11545 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
158 | 156, 157 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 0)
∈ ℕ0) |
159 | 11, 158 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑁 + 1) − 0) ∈
ℕ0) |
160 | 3, 6, 19, 5, 20, 21, 7, 22, 9, 23, 11 | srgbinomlem2 18761 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑁C(0 − 1)) ∈ ℕ0
∧ ((𝑁 + 1) − 0)
∈ ℕ0 ∧ 0 ∈ ℕ0)) → ((𝑁C(0 − 1)) ·
((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) ∈ 𝑆) |
161 | 146, 152,
159, 145, 160 | syl13anc 1479 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) ∈ 𝑆) |
162 | | oveq1 6821 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (𝑘 − 1) = (0 − 1)) |
163 | 162 | oveq2d 6830 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → (𝑁C(𝑘 − 1)) = (𝑁C(0 − 1))) |
164 | | oveq2 6822 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 0 → ((𝑁 + 1) − 𝑘) = ((𝑁 + 1) − 0)) |
165 | 164 | oveq1d 6829 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (((𝑁 + 1) − 𝑘) ↑ 𝐴) = (((𝑁 + 1) − 0) ↑ 𝐴)) |
166 | | oveq1 6821 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 0 → (𝑘 ↑ 𝐵) = (0 ↑ 𝐵)) |
167 | 165, 166 | oveq12d 6832 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)) = ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) |
168 | 163, 167 | oveq12d 6832 |
. . . . . . . . . . 11
⊢ (𝑘 = 0 → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) = ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵)))) |
169 | 3, 168 | gsumsn 18574 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Mnd ∧ 0 ∈
ℕ0 ∧ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵)))) |
170 | 93, 145, 161, 169 | syl3anc 1477 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵)))) |
171 | | 0lt1 10762 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
172 | 171 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 1) |
173 | 172, 69 | syl6breqr 4846 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < (0 +
1)) |
174 | | 0re 10252 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
175 | | 1re 10251 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
176 | 174, 175,
174 | 3pm3.2i 1424 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) |
177 | | ltsubadd 10710 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0
− 1) < 0 ↔ 0 < (0 + 1))) |
178 | 176, 177 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((0 − 1) < 0
↔ 0 < (0 + 1))) |
179 | 173, 178 | mpbird 247 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 − 1) <
0) |
180 | 179 | orcd 406 |
. . . . . . . . . . 11
⊢ (𝜑 → ((0 − 1) < 0 ∨
𝑁 < (0 −
1))) |
181 | | bcval4 13308 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (0 − 1) ∈ ℤ ∧ ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))) →
(𝑁C(0 − 1)) =
0) |
182 | 11, 150, 180, 181 | syl3anc 1477 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁C(0 − 1)) = 0) |
183 | 182 | oveq1d 6829 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) = (0 · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵)))) |
184 | 77, 21 | mulgnn0cl 17779 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Mnd ∧ ((𝑁 + 1) − 0) ∈
ℕ0 ∧ 𝐴
∈ 𝑆) → (((𝑁 + 1) − 0) ↑ 𝐴) ∈ 𝑆) |
185 | 67, 159, 22, 184 | syl3anc 1477 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑁 + 1) − 0) ↑ 𝐴) ∈ 𝑆) |
186 | 77, 21 | mulgnn0cl 17779 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Mnd ∧ 0 ∈
ℕ0 ∧ 𝐵
∈ 𝑆) → (0 ↑ 𝐵) ∈ 𝑆) |
187 | 67, 145, 9, 186 | syl3anc 1477 |
. . . . . . . . . . 11
⊢ (𝜑 → (0 ↑ 𝐵) ∈ 𝑆) |
188 | 3, 6 | srgcl 18732 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ SRing ∧ (((𝑁 + 1) − 0) ↑ 𝐴) ∈ 𝑆 ∧ (0 ↑ 𝐵) ∈ 𝑆) → ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵)) ∈ 𝑆) |
189 | 7, 185, 187, 188 | syl3anc 1477 |
. . . . . . . . . 10
⊢ (𝜑 → ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵)) ∈ 𝑆) |
190 | 3, 4, 19 | mulg0 17767 |
. . . . . . . . . 10
⊢
(((((𝑁 + 1) −
0) ↑
𝐴) × (0 ↑ 𝐵)) ∈ 𝑆 → (0 · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) = (0g‘𝑅)) |
191 | 189, 190 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (0 · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) = (0g‘𝑅)) |
192 | 170, 183,
191 | 3eqtrrd 2799 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝑅) = (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
193 | 192 | oveq1d 6829 |
. . . . . . 7
⊢ (𝜑 →
((0g‘𝑅)
+ (𝑅 Σg
(𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
194 | 143, 193 | eqtr3d 2796 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
195 | 7 | adantr 472 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝑅 ∈ SRing) |
196 | 67 | adantr 472 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝐺 ∈ Mnd) |
197 | 22 | adantr 472 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝐴 ∈ 𝑆) |
198 | 77, 21 | mulgnn0cl 17779 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0 ∧ 𝐴 ∈ 𝑆) → (((𝑁 + 1) − 𝑘) ↑ 𝐴) ∈ 𝑆) |
199 | 196, 134,
197, 198 | syl3anc 1477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((𝑁 + 1) − 𝑘) ↑ 𝐴) ∈ 𝑆) |
200 | 9 | adantr 472 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → 𝐵 ∈ 𝑆) |
201 | 77, 21 | mulgnn0cl 17779 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ 𝑘 ∈ ℕ0
∧ 𝐵 ∈ 𝑆) → (𝑘 ↑ 𝐵) ∈ 𝑆) |
202 | 196, 137,
200, 201 | syl3anc 1477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (𝑘 ↑ 𝐵) ∈ 𝑆) |
203 | 3, 19, 6 | srgmulgass 18751 |
. . . . . . . . 9
⊢ ((𝑅 ∈ SRing ∧ ((𝑁C(𝑘 − 1)) ∈ ℕ0 ∧
(((𝑁 + 1) − 𝑘) ↑ 𝐴) ∈ 𝑆 ∧ (𝑘 ↑ 𝐵) ∈ 𝑆)) → (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵)) = ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
204 | 195, 132,
199, 202, 203 | syl13anc 1479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵)) = ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))) |
205 | 204 | mpteq2dva 4896 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵))) = (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) |
206 | 205 | oveq2d 6830 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵)))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
207 | 11, 157 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
208 | | simpl 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝜑) |
209 | | elfzelz 12555 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ) |
210 | 209, 129 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ) |
211 | 11, 210, 131 | syl2an 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈
ℕ0) |
212 | | fznn0sub 12586 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
213 | 212 | adantl 473 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈
ℕ0) |
214 | | elfznn0 12646 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0) |
215 | 214 | adantl 473 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0) |
216 | 208, 211,
213, 215, 138 | syl13anc 1479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
217 | 3, 5, 33, 207, 216 | gsummptfzsplitl 18553 |
. . . . . . 7
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
218 | | snfi 8205 |
. . . . . . . . . 10
⊢ {0}
∈ Fin |
219 | 218 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {0} ∈
Fin) |
220 | 168 | eleq1d 2824 |
. . . . . . . . . . . 12
⊢ (𝑘 = 0 → (((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆 ↔ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) ∈ 𝑆)) |
221 | 220 | ralsng 4362 |
. . . . . . . . . . 11
⊢ (0 ∈
ℕ0 → (∀𝑘 ∈ {0} ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆 ↔ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) ∈ 𝑆)) |
222 | 144, 221 | ax-mp 5 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
{0} ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆 ↔ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) ↑ 𝐴) × (0 ↑ 𝐵))) ∈ 𝑆) |
223 | 161, 222 | sylibr 224 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ {0} ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) ∈ 𝑆) |
224 | 3, 33, 219, 223 | gsummptcl 18586 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆) |
225 | 3, 5 | cmncom 18429 |
. . . . . . . 8
⊢ ((𝑅 ∈ CMnd ∧ (𝑅 Σg
(𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆 ∧ (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) ∈ 𝑆) → ((𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
226 | 33, 141, 224, 225 | syl3anc 1477 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
227 | 217, 226 | eqtrd 2794 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))))) |
228 | 194, 206,
227 | 3eqtr4d 2804 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) ↑ 𝐴)) × (𝑘 ↑ 𝐵)))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
229 | 125, 228 | syl5eq 2806 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) ↑ 𝐴)) × (𝑗 ↑ 𝐵)))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
230 | 49, 113, 229 | 3eqtrd 2798 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))) × 𝐵))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
231 | 31, 230 | eqtr3d 2796 |
. 2
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵))))) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
232 | 2, 231 | sylan9eqr 2816 |
1
⊢ ((𝜑 ∧ 𝜓) → ((𝑁 ↑ (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |