MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinomlem4 Structured version   Visualization version   GIF version

Theorem srgbinomlem4 18763
Description: Lemma 4 for srgbinomlem 18764. (Contributed by AV, 24-Aug-2019.) (Proof shortened by AV, 19-Nov-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
srgbinomlem.r (𝜑𝑅 ∈ SRing)
srgbinomlem.a (𝜑𝐴𝑆)
srgbinomlem.b (𝜑𝐵𝑆)
srgbinomlem.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgbinomlem.n (𝜑𝑁 ∈ ℕ0)
srgbinomlem.i (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Assertion
Ref Expression
srgbinomlem4 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜓(𝑘)   + (𝑘)   𝐺(𝑘)

Proof of Theorem srgbinomlem4
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 srgbinomlem.i . . 3 (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
21oveq1d 6829 . 2 (𝜓 → ((𝑁 (𝐴 + 𝐵)) × 𝐵) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐵))
3 srgbinom.s . . . 4 𝑆 = (Base‘𝑅)
4 eqid 2760 . . . 4 (0g𝑅) = (0g𝑅)
5 srgbinom.a . . . 4 + = (+g𝑅)
6 srgbinom.m . . . 4 × = (.r𝑅)
7 srgbinomlem.r . . . 4 (𝜑𝑅 ∈ SRing)
8 ovexd 6844 . . . 4 (𝜑 → (0...𝑁) ∈ V)
9 srgbinomlem.b . . . 4 (𝜑𝐵𝑆)
10 simpl 474 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝜑)
11 srgbinomlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
12 elfzelz 12555 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
13 bccl 13323 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
1411, 12, 13syl2an 495 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
15 fznn0sub 12586 . . . . . 6 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
1615adantl 473 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
17 elfznn0 12646 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
1817adantl 473 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
19 srgbinom.t . . . . . 6 · = (.g𝑅)
20 srgbinom.g . . . . . 6 𝐺 = (mulGrp‘𝑅)
21 srgbinom.e . . . . . 6 = (.g𝐺)
22 srgbinomlem.a . . . . . 6 (𝜑𝐴𝑆)
23 srgbinomlem.c . . . . . 6 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
243, 6, 19, 5, 20, 21, 7, 22, 9, 23, 11srgbinomlem2 18761 . . . . 5 ((𝜑 ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁𝑘) ∈ ℕ0𝑘 ∈ ℕ0)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
2510, 14, 16, 18, 24syl13anc 1479 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
26 eqid 2760 . . . . 5 (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))
27 fzfid 12986 . . . . 5 (𝜑 → (0...𝑁) ∈ Fin)
28 ovexd 6844 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ V)
29 fvexd 6365 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
3026, 27, 28, 29fsuppmptdm 8453 . . . 4 (𝜑 → (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵)))) finSupp (0g𝑅))
313, 4, 5, 6, 7, 8, 9, 25, 30srgsummulcr 18757 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐵))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐵))
32 srgcmn 18728 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
337, 32syl 17 . . . . 5 (𝜑𝑅 ∈ CMnd)
34 1z 11619 . . . . . 6 1 ∈ ℤ
3534a1i 11 . . . . 5 (𝜑 → 1 ∈ ℤ)
36 0zd 11601 . . . . 5 (𝜑 → 0 ∈ ℤ)
3711nn0zd 11692 . . . . 5 (𝜑𝑁 ∈ ℤ)
387adantr 472 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑅 ∈ SRing)
399adantr 472 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵𝑆)
403, 6srgcl 18732 . . . . . 6 ((𝑅 ∈ SRing ∧ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆𝐵𝑆) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐵) ∈ 𝑆)
4138, 25, 39, 40syl3anc 1477 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐵) ∈ 𝑆)
42 oveq2 6822 . . . . . . 7 (𝑘 = (𝑗 − 1) → (𝑁C𝑘) = (𝑁C(𝑗 − 1)))
43 oveq2 6822 . . . . . . . . 9 (𝑘 = (𝑗 − 1) → (𝑁𝑘) = (𝑁 − (𝑗 − 1)))
4443oveq1d 6829 . . . . . . . 8 (𝑘 = (𝑗 − 1) → ((𝑁𝑘) 𝐴) = ((𝑁 − (𝑗 − 1)) 𝐴))
45 oveq1 6821 . . . . . . . 8 (𝑘 = (𝑗 − 1) → (𝑘 𝐵) = ((𝑗 − 1) 𝐵))
4644, 45oveq12d 6832 . . . . . . 7 (𝑘 = (𝑗 − 1) → (((𝑁𝑘) 𝐴) × (𝑘 𝐵)) = (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵)))
4742, 46oveq12d 6832 . . . . . 6 (𝑘 = (𝑗 − 1) → ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))))
4847oveq1d 6829 . . . . 5 (𝑘 = (𝑗 − 1) → (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵))
493, 4, 33, 35, 36, 37, 41, 48gsummptshft 18556 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐵))) = (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵))))
5011nn0cnd 11565 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
5150adantr 472 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑁 ∈ ℂ)
52 elfzelz 12555 . . . . . . . . . . . . . 14 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑗 ∈ ℤ)
5352adantl 473 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑗 ∈ ℤ)
5453zcnd 11695 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑗 ∈ ℂ)
55 1cnd 10268 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 1 ∈ ℂ)
5651, 54, 55subsub3d 10634 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁 − (𝑗 − 1)) = ((𝑁 + 1) − 𝑗))
5756oveq1d 6829 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁 − (𝑗 − 1)) 𝐴) = (((𝑁 + 1) − 𝑗) 𝐴))
5857oveq1d 6829 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵)) = ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵)))
5958oveq2d 6830 . . . . . . . 8 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) = ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵))))
6059oveq1d 6829 . . . . . . 7 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵) = (((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵))
617adantr 472 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑅 ∈ SRing)
62 peano2zm 11632 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
6352, 62syl 17 . . . . . . . . . . 11 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → (𝑗 − 1) ∈ ℤ)
64 bccl 13323 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑗 − 1) ∈ ℤ) → (𝑁C(𝑗 − 1)) ∈ ℕ0)
6511, 63, 64syl2an 495 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁C(𝑗 − 1)) ∈ ℕ0)
6620srgmgp 18730 . . . . . . . . . . . . 13 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
677, 66syl 17 . . . . . . . . . . . 12 (𝜑𝐺 ∈ Mnd)
6867adantr 472 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐺 ∈ Mnd)
69 0p1e1 11344 . . . . . . . . . . . . . . 15 (0 + 1) = 1
7069oveq1i 6824 . . . . . . . . . . . . . 14 ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1))
7170eleq2i 2831 . . . . . . . . . . . . 13 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↔ 𝑗 ∈ (1...(𝑁 + 1)))
72 fznn0sub 12586 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...(𝑁 + 1)) → ((𝑁 + 1) − 𝑗) ∈ ℕ0)
7372a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑗 ∈ (1...(𝑁 + 1)) → ((𝑁 + 1) − 𝑗) ∈ ℕ0))
7471, 73syl5bi 232 . . . . . . . . . . . 12 (𝜑 → (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → ((𝑁 + 1) − 𝑗) ∈ ℕ0))
7574imp 444 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁 + 1) − 𝑗) ∈ ℕ0)
7622adantr 472 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐴𝑆)
7720, 3mgpbas 18715 . . . . . . . . . . . 12 𝑆 = (Base‘𝐺)
7877, 21mulgnn0cl 17779 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ ((𝑁 + 1) − 𝑗) ∈ ℕ0𝐴𝑆) → (((𝑁 + 1) − 𝑗) 𝐴) ∈ 𝑆)
7968, 75, 76, 78syl3anc 1477 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁 + 1) − 𝑗) 𝐴) ∈ 𝑆)
80 elfznn 12583 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...(𝑁 + 1)) → 𝑗 ∈ ℕ)
81 nnm1nn0 11546 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
8280, 81syl 17 . . . . . . . . . . . . 13 (𝑗 ∈ (1...(𝑁 + 1)) → (𝑗 − 1) ∈ ℕ0)
8371, 82sylbi 207 . . . . . . . . . . . 12 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → (𝑗 − 1) ∈ ℕ0)
8483adantl 473 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑗 − 1) ∈ ℕ0)
859adantr 472 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐵𝑆)
8677, 21mulgnn0cl 17779 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑗 − 1) ∈ ℕ0𝐵𝑆) → ((𝑗 − 1) 𝐵) ∈ 𝑆)
8768, 84, 85, 86syl3anc 1477 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑗 − 1) 𝐵) ∈ 𝑆)
883, 19, 6srgmulgass 18751 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ ((𝑁C(𝑗 − 1)) ∈ ℕ0 ∧ (((𝑁 + 1) − 𝑗) 𝐴) ∈ 𝑆 ∧ ((𝑗 − 1) 𝐵) ∈ 𝑆)) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)) = ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵))))
8961, 65, 79, 87, 88syl13anc 1479 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)) = ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵))))
9089eqcomd 2766 . . . . . . . 8 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵))) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)))
9190oveq1d 6829 . . . . . . 7 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · ((((𝑁 + 1) − 𝑗) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵) = ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)) × 𝐵))
92 srgmnd 18729 . . . . . . . . . . . 12 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
937, 92syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Mnd)
9493adantr 472 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑅 ∈ Mnd)
953, 19mulgnn0cl 17779 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ (𝑁C(𝑗 − 1)) ∈ ℕ0 ∧ (((𝑁 + 1) − 𝑗) 𝐴) ∈ 𝑆) → ((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) ∈ 𝑆)
9694, 65, 79, 95syl3anc 1477 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) ∈ 𝑆)
973, 6srgass 18733 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) ∈ 𝑆 ∧ ((𝑗 − 1) 𝐵) ∈ 𝑆𝐵𝑆)) → ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (((𝑗 − 1) 𝐵) × 𝐵)))
9861, 96, 87, 85, 97syl13anc 1479 . . . . . . . 8 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (((𝑗 − 1) 𝐵) × 𝐵)))
9920, 6mgpplusg 18713 . . . . . . . . . . . 12 × = (+g𝐺)
10077, 21, 99mulgnn0p1 17773 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ (𝑗 − 1) ∈ ℕ0𝐵𝑆) → (((𝑗 − 1) + 1) 𝐵) = (((𝑗 − 1) 𝐵) × 𝐵))
101100eqcomd 2766 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑗 − 1) ∈ ℕ0𝐵𝑆) → (((𝑗 − 1) 𝐵) × 𝐵) = (((𝑗 − 1) + 1) 𝐵))
10268, 84, 85, 101syl3anc 1477 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑗 − 1) 𝐵) × 𝐵) = (((𝑗 − 1) + 1) 𝐵))
103102oveq2d 6830 . . . . . . . 8 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (((𝑗 − 1) 𝐵) × 𝐵)) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (((𝑗 − 1) + 1) 𝐵)))
10452zcnd 11695 . . . . . . . . . . . 12 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑗 ∈ ℂ)
105 1cnd 10268 . . . . . . . . . . . 12 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → 1 ∈ ℂ)
106104, 105npcand 10608 . . . . . . . . . . 11 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) → ((𝑗 − 1) + 1) = 𝑗)
107106adantl 473 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑗 − 1) + 1) = 𝑗)
108107oveq1d 6829 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑗 − 1) + 1) 𝐵) = (𝑗 𝐵))
109108oveq2d 6830 . . . . . . . 8 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (((𝑗 − 1) + 1) 𝐵)) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))
11098, 103, 1093eqtrd 2798 . . . . . . 7 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → ((((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × ((𝑗 − 1) 𝐵)) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))
11160, 91, 1103eqtrd 2798 . . . . . 6 ((𝜑𝑗 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵) = (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))
112111mpteq2dva 4896 . . . . 5 (𝜑 → (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵)) = (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵))))
113112oveq2d 6830 . . . 4 (𝜑 → (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 − (𝑗 − 1)) 𝐴) × ((𝑗 − 1) 𝐵))) × 𝐵))) = (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))))
114 mpteq1 4889 . . . . . . . 8 (((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1)) → (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵))) = (𝑗 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵))))
11570, 114ax-mp 5 . . . . . . 7 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵))) = (𝑗 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))
116 oveq1 6821 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑗 − 1) = (𝑘 − 1))
117116oveq2d 6830 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑁C(𝑗 − 1)) = (𝑁C(𝑘 − 1)))
118 oveq2 6822 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑁 + 1) − 𝑗) = ((𝑁 + 1) − 𝑘))
119118oveq1d 6829 . . . . . . . . . 10 (𝑗 = 𝑘 → (((𝑁 + 1) − 𝑗) 𝐴) = (((𝑁 + 1) − 𝑘) 𝐴))
120117, 119oveq12d 6832 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) = ((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)))
121 oveq1 6821 . . . . . . . . 9 (𝑗 = 𝑘 → (𝑗 𝐵) = (𝑘 𝐵))
122120, 121oveq12d 6832 . . . . . . . 8 (𝑗 = 𝑘 → (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)) = (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)))
123122cbvmptv 4902 . . . . . . 7 (𝑗 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵))) = (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)))
124115, 123eqtri 2782 . . . . . 6 (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵))) = (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)))
125124oveq2i 6825 . . . . 5 (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵))))
126 fzfid 12986 . . . . . . . . 9 (𝜑 → (1...(𝑁 + 1)) ∈ Fin)
127 simpl 474 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝜑)
128 elfzelz 12555 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℤ)
129 peano2zm 11632 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
130128, 129syl 17 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ)
131 bccl 13323 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
13211, 130, 131syl2an 495 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
133 fznn0sub 12586 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
134133adantl 473 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
135 elfznn 12583 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ)
136135nnnn0d 11563 . . . . . . . . . . . 12 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
137136adantl 473 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
1383, 6, 19, 5, 20, 21, 7, 22, 9, 23, 11srgbinomlem2 18761 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑁C(𝑘 − 1)) ∈ ℕ0 ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0𝑘 ∈ ℕ0)) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
139127, 132, 134, 137, 138syl13anc 1479 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
140139ralrimiva 3104 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (1...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
1413, 33, 126, 140gsummptcl 18586 . . . . . . . 8 (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆)
1423, 5, 4mndlid 17532 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆) → ((0g𝑅) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
14393, 141, 142syl2anc 696 . . . . . . 7 (𝜑 → ((0g𝑅) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
144 0nn0 11519 . . . . . . . . . . 11 0 ∈ ℕ0
145144a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℕ0)
146 id 22 . . . . . . . . . . 11 (𝜑𝜑)
147 0z 11600 . . . . . . . . . . . . . 14 0 ∈ ℤ
148147, 34pm3.2i 470 . . . . . . . . . . . . 13 (0 ∈ ℤ ∧ 1 ∈ ℤ)
149 zsubcl 11631 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈ ℤ)
150148, 149mp1i 13 . . . . . . . . . . . 12 (𝜑 → (0 − 1) ∈ ℤ)
151 bccl 13323 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (0 − 1) ∈ ℤ) → (𝑁C(0 − 1)) ∈ ℕ0)
15211, 150, 151syl2anc 696 . . . . . . . . . . 11 (𝜑 → (𝑁C(0 − 1)) ∈ ℕ0)
153 nn0cn 11514 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
154 peano2cn 10420 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
155153, 154syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
156155subid1d 10593 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 0) = (𝑁 + 1))
157 peano2nn0 11545 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
158156, 157eqeltrd 2839 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 0) ∈ ℕ0)
15911, 158syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑁 + 1) − 0) ∈ ℕ0)
1603, 6, 19, 5, 20, 21, 7, 22, 9, 23, 11srgbinomlem2 18761 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑁C(0 − 1)) ∈ ℕ0 ∧ ((𝑁 + 1) − 0) ∈ ℕ0 ∧ 0 ∈ ℕ0)) → ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) ∈ 𝑆)
161146, 152, 159, 145, 160syl13anc 1479 . . . . . . . . . 10 (𝜑 → ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) ∈ 𝑆)
162 oveq1 6821 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
163162oveq2d 6830 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑁C(𝑘 − 1)) = (𝑁C(0 − 1)))
164 oveq2 6822 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((𝑁 + 1) − 𝑘) = ((𝑁 + 1) − 0))
165164oveq1d 6829 . . . . . . . . . . . . 13 (𝑘 = 0 → (((𝑁 + 1) − 𝑘) 𝐴) = (((𝑁 + 1) − 0) 𝐴))
166 oveq1 6821 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑘 𝐵) = (0 𝐵))
167165, 166oveq12d 6832 . . . . . . . . . . . 12 (𝑘 = 0 → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) = ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵)))
168163, 167oveq12d 6832 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))))
1693, 168gsumsn 18574 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ 0 ∈ ℕ0 ∧ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) ∈ 𝑆) → (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))))
17093, 145, 161, 169syl3anc 1477 . . . . . . . . 9 (𝜑 → (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))))
171 0lt1 10762 . . . . . . . . . . . . . . 15 0 < 1
172171a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
173172, 69syl6breqr 4846 . . . . . . . . . . . . 13 (𝜑 → 0 < (0 + 1))
174 0re 10252 . . . . . . . . . . . . . . 15 0 ∈ ℝ
175 1re 10251 . . . . . . . . . . . . . . 15 1 ∈ ℝ
176174, 175, 1743pm3.2i 1424 . . . . . . . . . . . . . 14 (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ)
177 ltsubadd 10710 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 1) < 0 ↔ 0 < (0 + 1)))
178176, 177mp1i 13 . . . . . . . . . . . . 13 (𝜑 → ((0 − 1) < 0 ↔ 0 < (0 + 1)))
179173, 178mpbird 247 . . . . . . . . . . . 12 (𝜑 → (0 − 1) < 0)
180179orcd 406 . . . . . . . . . . 11 (𝜑 → ((0 − 1) < 0 ∨ 𝑁 < (0 − 1)))
181 bcval4 13308 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (0 − 1) ∈ ℤ ∧ ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))) → (𝑁C(0 − 1)) = 0)
18211, 150, 180, 181syl3anc 1477 . . . . . . . . . 10 (𝜑 → (𝑁C(0 − 1)) = 0)
183182oveq1d 6829 . . . . . . . . 9 (𝜑 → ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) = (0 · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))))
18477, 21mulgnn0cl 17779 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ ((𝑁 + 1) − 0) ∈ ℕ0𝐴𝑆) → (((𝑁 + 1) − 0) 𝐴) ∈ 𝑆)
18567, 159, 22, 184syl3anc 1477 . . . . . . . . . . 11 (𝜑 → (((𝑁 + 1) − 0) 𝐴) ∈ 𝑆)
18677, 21mulgnn0cl 17779 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 0 ∈ ℕ0𝐵𝑆) → (0 𝐵) ∈ 𝑆)
18767, 145, 9, 186syl3anc 1477 . . . . . . . . . . 11 (𝜑 → (0 𝐵) ∈ 𝑆)
1883, 6srgcl 18732 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ (((𝑁 + 1) − 0) 𝐴) ∈ 𝑆 ∧ (0 𝐵) ∈ 𝑆) → ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵)) ∈ 𝑆)
1897, 185, 187, 188syl3anc 1477 . . . . . . . . . 10 (𝜑 → ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵)) ∈ 𝑆)
1903, 4, 19mulg0 17767 . . . . . . . . . 10 (((((𝑁 + 1) − 0) 𝐴) × (0 𝐵)) ∈ 𝑆 → (0 · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) = (0g𝑅))
191189, 190syl 17 . . . . . . . . 9 (𝜑 → (0 · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) = (0g𝑅))
192170, 183, 1913eqtrrd 2799 . . . . . . . 8 (𝜑 → (0g𝑅) = (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
193192oveq1d 6829 . . . . . . 7 (𝜑 → ((0g𝑅) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
194143, 193eqtr3d 2796 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
1957adantr 472 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝑅 ∈ SRing)
19667adantr 472 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝐺 ∈ Mnd)
19722adantr 472 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝐴𝑆)
19877, 21mulgnn0cl 17779 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0𝐴𝑆) → (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆)
199196, 134, 197, 198syl3anc 1477 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆)
2009adantr 472 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → 𝐵𝑆)
20177, 21mulgnn0cl 17779 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 𝑘 ∈ ℕ0𝐵𝑆) → (𝑘 𝐵) ∈ 𝑆)
202196, 137, 200, 201syl3anc 1477 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → (𝑘 𝐵) ∈ 𝑆)
2033, 19, 6srgmulgass 18751 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ ((𝑁C(𝑘 − 1)) ∈ ℕ0 ∧ (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆 ∧ (𝑘 𝐵) ∈ 𝑆)) → (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)) = ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
204195, 132, 199, 202, 203syl13anc 1479 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)) = ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
205204mpteq2dva 4896 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵))) = (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
206205oveq2d 6830 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)))) = (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
20711, 157syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ0)
208 simpl 474 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝜑)
209 elfzelz 12555 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
210209, 129syl 17 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ)
21111, 210, 131syl2an 495 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
212 fznn0sub 12586 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
213212adantl 473 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
214 elfznn0 12646 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
215214adantl 473 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
216208, 211, 213, 215, 138syl13anc 1479 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
2173, 5, 33, 207, 216gsummptfzsplitl 18553 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
218 snfi 8205 . . . . . . . . . 10 {0} ∈ Fin
219218a1i 11 . . . . . . . . 9 (𝜑 → {0} ∈ Fin)
220168eleq1d 2824 . . . . . . . . . . . 12 (𝑘 = 0 → (((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆 ↔ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) ∈ 𝑆))
221220ralsng 4362 . . . . . . . . . . 11 (0 ∈ ℕ0 → (∀𝑘 ∈ {0} ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆 ↔ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) ∈ 𝑆))
222144, 221ax-mp 5 . . . . . . . . . 10 (∀𝑘 ∈ {0} ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆 ↔ ((𝑁C(0 − 1)) · ((((𝑁 + 1) − 0) 𝐴) × (0 𝐵))) ∈ 𝑆)
223161, 222sylibr 224 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ {0} ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
2243, 33, 219, 223gsummptcl 18586 . . . . . . . 8 (𝜑 → (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆)
2253, 5cmncom 18429 . . . . . . . 8 ((𝑅 ∈ CMnd ∧ (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆 ∧ (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) ∈ 𝑆) → ((𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
22633, 141, 224, 225syl3anc 1477 . . . . . . 7 (𝜑 → ((𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
227217, 226eqtrd 2794 . . . . . 6 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ {0} ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
228194, 206, 2273eqtr4d 2804 . . . . 5 (𝜑 → (𝑅 Σg (𝑘 ∈ (1...(𝑁 + 1)) ↦ (((𝑁C(𝑘 − 1)) · (((𝑁 + 1) − 𝑘) 𝐴)) × (𝑘 𝐵)))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
229125, 228syl5eq 2806 . . . 4 (𝜑 → (𝑅 Σg (𝑗 ∈ ((0 + 1)...(𝑁 + 1)) ↦ (((𝑁C(𝑗 − 1)) · (((𝑁 + 1) − 𝑗) 𝐴)) × (𝑗 𝐵)))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
23049, 113, 2293eqtrd 2798 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))) × 𝐵))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
23131, 230eqtr3d 2796 . 2 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
2322, 231sylan9eqr 2816 1 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  {csn 4321   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6814  Fincfn 8123  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   < clt 10286  cmin 10478  cn 11232  0cn0 11504  cz 11589  ...cfz 12539  Ccbc 13303  Basecbs 16079  +gcplusg 16163  .rcmulr 16164  0gc0g 16322   Σg cgsu 16323  Mndcmnd 17515  .gcmg 17761  CMndccmn 18413  mulGrpcmgp 18709  SRingcsrg 18725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-seq 13016  df-fac 13275  df-bc 13304  df-hash 13332  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-0g 16324  df-gsum 16325  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-mgp 18710  df-srg 18726
This theorem is referenced by:  srgbinomlem  18764
  Copyright terms: Public domain W3C validator