Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgbinomlem Structured version   Visualization version   GIF version

Theorem srgbinomlem 18764
 Description: Lemma for srgbinom 18765. Inductive step, analogous to binomlem 14780. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
srgbinom.s 𝑆 = (Base‘𝑅)
srgbinom.m × = (.r𝑅)
srgbinom.t · = (.g𝑅)
srgbinom.a + = (+g𝑅)
srgbinom.g 𝐺 = (mulGrp‘𝑅)
srgbinom.e = (.g𝐺)
srgbinomlem.r (𝜑𝑅 ∈ SRing)
srgbinomlem.a (𝜑𝐴𝑆)
srgbinomlem.b (𝜑𝐵𝑆)
srgbinomlem.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgbinomlem.n (𝜑𝑁 ∈ ℕ0)
srgbinomlem.i (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Assertion
Ref Expression
srgbinomlem ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   𝜑,𝑘   + ,𝑘
Allowed substitution hints:   𝜓(𝑘)   𝐺(𝑘)

Proof of Theorem srgbinomlem
StepHypRef Expression
1 srgbinom.s . . . 4 𝑆 = (Base‘𝑅)
2 srgbinom.m . . . 4 × = (.r𝑅)
3 srgbinom.t . . . 4 · = (.g𝑅)
4 srgbinom.a . . . 4 + = (+g𝑅)
5 srgbinom.g . . . 4 𝐺 = (mulGrp‘𝑅)
6 srgbinom.e . . . 4 = (.g𝐺)
7 srgbinomlem.r . . . 4 (𝜑𝑅 ∈ SRing)
8 srgbinomlem.a . . . 4 (𝜑𝐴𝑆)
9 srgbinomlem.b . . . 4 (𝜑𝐵𝑆)
10 srgbinomlem.c . . . 4 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
11 srgbinomlem.n . . . 4 (𝜑𝑁 ∈ ℕ0)
12 srgbinomlem.i . . . 4 (𝜓 → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12srgbinomlem3 18762 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐴) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12srgbinomlem4 18763 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × 𝐵) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
1513, 14oveq12d 6832 . 2 ((𝜑𝜓) → (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
165srgmgp 18730 . . . . . . 7 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
177, 16syl 17 . . . . . 6 (𝜑𝐺 ∈ Mnd)
18 srgmnd 18729 . . . . . . . 8 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
197, 18syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
201, 4mndcl 17522 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐴𝑆𝐵𝑆) → (𝐴 + 𝐵) ∈ 𝑆)
2119, 8, 9, 20syl3anc 1477 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ 𝑆)
2217, 11, 213jca 1123 . . . . 5 (𝜑 → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆))
2322adantr 472 . . . 4 ((𝜑𝜓) → (𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆))
245, 1mgpbas 18715 . . . . 5 𝑆 = (Base‘𝐺)
255, 2mgpplusg 18713 . . . . 5 × = (+g𝐺)
2624, 6, 25mulgnn0p1 17773 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆) → ((𝑁 + 1) (𝐴 + 𝐵)) = ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)))
2723, 26syl 17 . . 3 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)))
2824, 6mulgnn0cl 17779 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ (𝐴 + 𝐵) ∈ 𝑆) → (𝑁 (𝐴 + 𝐵)) ∈ 𝑆)
2917, 11, 21, 28syl3anc 1477 . . . . . . 7 (𝜑 → (𝑁 (𝐴 + 𝐵)) ∈ 𝑆)
3029, 8, 93jca 1123 . . . . . 6 (𝜑 → ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆))
317, 30jca 555 . . . . 5 (𝜑 → (𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)))
3231adantr 472 . . . 4 ((𝜑𝜓) → (𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)))
331, 4, 2srgdi 18736 . . . 4 ((𝑅 ∈ SRing ∧ ((𝑁 (𝐴 + 𝐵)) ∈ 𝑆𝐴𝑆𝐵𝑆)) → ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
3432, 33syl 17 . . 3 ((𝜑𝜓) → ((𝑁 (𝐴 + 𝐵)) × (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
3527, 34eqtrd 2794 . 2 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (((𝑁 (𝐴 + 𝐵)) × 𝐴) + ((𝑁 (𝐴 + 𝐵)) × 𝐵)))
36 elfzelz 12555 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
37 bcpasc 13322 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
3811, 36, 37syl2an 495 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
3938oveq1d 6829 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
4019adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ Mnd)
41 bccl 13323 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
4211, 36, 41syl2an 495 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
4311adantr 472 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑁 ∈ ℕ0)
4436adantl 473 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℤ)
45 peano2zm 11632 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
4644, 45syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 − 1) ∈ ℤ)
47 bccl 13323 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
4843, 46, 47syl2anc 696 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
497adantr 472 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑅 ∈ SRing)
5017adantr 472 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐺 ∈ Mnd)
51 fznn0sub 12586 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
5251adantl 473 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
538adantr 472 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐴𝑆)
5424, 6mulgnn0cl 17779 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0𝐴𝑆) → (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆)
5550, 52, 53, 54syl3anc 1477 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆)
56 elfznn0 12646 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
5756adantl 473 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℕ0)
589adantr 472 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝐵𝑆)
5924, 6mulgnn0cl 17779 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 𝑘 ∈ ℕ0𝐵𝑆) → (𝑘 𝐵) ∈ 𝑆)
6050, 57, 58, 59syl3anc 1477 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 𝐵) ∈ 𝑆)
611, 2srgcl 18732 . . . . . . . . 9 ((𝑅 ∈ SRing ∧ (((𝑁 + 1) − 𝑘) 𝐴) ∈ 𝑆 ∧ (𝑘 𝐵) ∈ 𝑆) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)
6249, 55, 60, 61syl3anc 1477 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)
631, 3, 4mulgnn0dir 17792 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ ((𝑁C𝑘) ∈ ℕ0 ∧ (𝑁C(𝑘 − 1)) ∈ ℕ0 ∧ ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆)) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6440, 42, 48, 62, 63syl13anc 1479 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6539, 64eqtr3d 2796 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) = (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))
6665mpteq2dva 4896 . . . . 5 (𝜑 → (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
6766oveq2d 6830 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
68 srgcmn 18728 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ CMnd)
697, 68syl 17 . . . . 5 (𝜑𝑅 ∈ CMnd)
70 fzfid 12986 . . . . 5 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
711, 3mulgnn0cl 17779 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑁C𝑘) ∈ ℕ0 ∧ ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
7240, 42, 62, 71syl3anc 1477 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
7336, 45syl 17 . . . . . . 7 (𝑘 ∈ (0...(𝑁 + 1)) → (𝑘 − 1) ∈ ℤ)
7411, 73, 47syl2an 495 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
751, 3mulgnn0cl 17779 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑁C(𝑘 − 1)) ∈ ℕ0 ∧ ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)) ∈ 𝑆) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
7640, 74, 62, 75syl3anc 1477 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) ∈ 𝑆)
77 eqid 2760 . . . . 5 (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
78 eqid 2760 . . . . 5 (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))) = (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))
791, 4, 69, 70, 72, 76, 77, 78gsummptfidmadd 18545 . . . 4 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))) + ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
8067, 79eqtrd 2794 . . 3 (𝜑 → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
8180adantr 472 . 2 ((𝜑𝜓) → (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) = ((𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))) + (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ ((𝑁C(𝑘 − 1)) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵)))))))
8215, 35, 813eqtr4d 2804 1 ((𝜑𝜓) → ((𝑁 + 1) (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...(𝑁 + 1)) ↦ (((𝑁 + 1)C𝑘) · ((((𝑁 + 1) − 𝑘) 𝐴) × (𝑘 𝐵))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ↦ cmpt 4881  ‘cfv 6049  (class class class)co 6814  0cc0 10148  1c1 10149   + caddc 10151   − cmin 10478  ℕ0cn0 11504  ℤcz 11589  ...cfz 12539  Ccbc 13303  Basecbs 16079  +gcplusg 16163  .rcmulr 16164   Σg cgsu 16323  Mndcmnd 17515  .gcmg 17761  CMndccmn 18413  mulGrpcmgp 18709  SRingcsrg 18725 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-seq 13016  df-fac 13275  df-bc 13304  df-hash 13332  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-0g 16324  df-gsum 16325  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-mgp 18710  df-ur 18722  df-srg 18726 This theorem is referenced by:  srgbinom  18765
 Copyright terms: Public domain W3C validator