![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgacl | Structured version Visualization version GIF version |
Description: Closure of the addition operation of a semiring. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
Ref | Expression |
---|---|
srgacl.b | ⊢ 𝐵 = (Base‘𝑅) |
srgacl.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
srgacl | ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgmnd 18717 | . 2 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
2 | srgacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | srgacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
4 | 2, 3 | mndcl 17509 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1166 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 +gcplusg 16149 Mndcmnd 17502 SRingcsrg 18713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4923 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-iota 5994 df-fv 6039 df-ov 6796 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-cmn 18402 df-srg 18714 |
This theorem is referenced by: srglmhm 18743 srgrmhm 18744 sge0tsms 41114 |
Copyright terms: Public domain | W3C validator |