![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sravsca | Structured version Visualization version GIF version |
Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
Ref | Expression |
---|---|
sravsca | ⊢ (𝜑 → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srapart.a | . . . . . 6 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
2 | 1 | adantl 473 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
3 | srapart.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
4 | sraval 19370 | . . . . . 6 ⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
5 | 3, 4 | sylan2 492 | . . . . 5 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
6 | 2, 5 | eqtrd 2786 | . . . 4 ⊢ ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
7 | 6 | fveq2d 6348 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝜑) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉))) |
8 | ovex 6833 | . . . . 5 ⊢ (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈ V | |
9 | fvex 6354 | . . . . 5 ⊢ (.r‘𝑊) ∈ V | |
10 | vscaid 16210 | . . . . . 6 ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | |
11 | 10 | setsid 16108 | . . . . 5 ⊢ (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈ V ∧ (.r‘𝑊) ∈ V) → (.r‘𝑊) = ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉))) |
12 | 8, 9, 11 | mp2an 710 | . . . 4 ⊢ (.r‘𝑊) = ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
13 | 6re 11285 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
14 | 6lt8 11400 | . . . . . . 7 ⊢ 6 < 8 | |
15 | 13, 14 | ltneii 10334 | . . . . . 6 ⊢ 6 ≠ 8 |
16 | vscandx 16209 | . . . . . . 7 ⊢ ( ·𝑠 ‘ndx) = 6 | |
17 | ipndx 16216 | . . . . . . 7 ⊢ (·𝑖‘ndx) = 8 | |
18 | 16, 17 | neeq12i 2990 | . . . . . 6 ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ↔ 6 ≠ 8) |
19 | 15, 18 | mpbir 221 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) |
20 | 10, 19 | setsnid 16109 | . . . 4 ⊢ ( ·𝑠 ‘((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) = ( ·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
21 | 12, 20 | eqtri 2774 | . . 3 ⊢ (.r‘𝑊) = ( ·𝑠 ‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
22 | 7, 21 | syl6reqr 2805 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
23 | 10 | str0 16105 | . . 3 ⊢ ∅ = ( ·𝑠 ‘∅) |
24 | fvprc 6338 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (.r‘𝑊) = ∅) | |
25 | 24 | adantr 472 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ∅) |
26 | fvprc 6338 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅) | |
27 | 26 | fveq1d 6346 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = (∅‘𝑆)) |
28 | 0fv 6380 | . . . . . 6 ⊢ (∅‘𝑆) = ∅ | |
29 | 27, 28 | syl6eq 2802 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅) |
30 | 1, 29 | sylan9eqr 2808 | . . . 4 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅) |
31 | 30 | fveq2d 6348 | . . 3 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘∅)) |
32 | 23, 25, 31 | 3eqtr4a 2812 | . 2 ⊢ ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
33 | 22, 32 | pm2.61ian 866 | 1 ⊢ (𝜑 → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ≠ wne 2924 Vcvv 3332 ⊆ wss 3707 ∅c0 4050 〈cop 4319 ‘cfv 6041 (class class class)co 6805 6c6 11258 8c8 11260 ndxcnx 16048 sSet csts 16049 Basecbs 16051 ↾s cress 16052 .rcmulr 16136 Scalarcsca 16138 ·𝑠 cvsca 16139 ·𝑖cip 16140 subringAlg csra 19362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-ndx 16054 df-slot 16055 df-sets 16058 df-vsca 16152 df-ip 16153 df-sra 19366 |
This theorem is referenced by: sralmod 19381 rlmvsca 19396 sraassa 19519 sranlm 22681 |
Copyright terms: Public domain | W3C validator |