Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sravsca Structured version   Visualization version   GIF version

Theorem sravsca 19376
 Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
sravsca (𝜑 → (.r𝑊) = ( ·𝑠𝐴))

Proof of Theorem sravsca
StepHypRef Expression
1 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
21adantl 473 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
4 sraval 19370 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
53, 4sylan2 492 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
62, 5eqtrd 2786 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
76fveq2d 6348 . . 3 ((𝑊 ∈ V ∧ 𝜑) → ( ·𝑠𝐴) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
8 ovex 6833 . . . . 5 (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V
9 fvex 6354 . . . . 5 (.r𝑊) ∈ V
10 vscaid 16210 . . . . . 6 ·𝑠 = Slot ( ·𝑠 ‘ndx)
1110setsid 16108 . . . . 5 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (.r𝑊) = ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)))
128, 9, 11mp2an 710 . . . 4 (.r𝑊) = ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
13 6re 11285 . . . . . . 7 6 ∈ ℝ
14 6lt8 11400 . . . . . . 7 6 < 8
1513, 14ltneii 10334 . . . . . 6 6 ≠ 8
16 vscandx 16209 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
17 ipndx 16216 . . . . . . 7 (·𝑖‘ndx) = 8
1816, 17neeq12i 2990 . . . . . 6 (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ↔ 6 ≠ 8)
1915, 18mpbir 221 . . . . 5 ( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx)
2010, 19setsnid 16109 . . . 4 ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2112, 20eqtri 2774 . . 3 (.r𝑊) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
227, 21syl6reqr 2805 . 2 ((𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ( ·𝑠𝐴))
2310str0 16105 . . 3 ∅ = ( ·𝑠 ‘∅)
24 fvprc 6338 . . . 4 𝑊 ∈ V → (.r𝑊) = ∅)
2524adantr 472 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ∅)
26 fvprc 6338 . . . . . . 7 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅)
2726fveq1d 6346 . . . . . 6 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = (∅‘𝑆))
28 0fv 6380 . . . . . 6 (∅‘𝑆) = ∅
2927, 28syl6eq 2802 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
301, 29sylan9eqr 2808 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
3130fveq2d 6348 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → ( ·𝑠𝐴) = ( ·𝑠 ‘∅))
3223, 25, 313eqtr4a 2812 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ( ·𝑠𝐴))
3322, 32pm2.61ian 866 1 (𝜑 → (.r𝑊) = ( ·𝑠𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1624   ∈ wcel 2131   ≠ wne 2924  Vcvv 3332   ⊆ wss 3707  ∅c0 4050  ⟨cop 4319  ‘cfv 6041  (class class class)co 6805  6c6 11258  8c8 11260  ndxcnx 16048   sSet csts 16049  Basecbs 16051   ↾s cress 16052  .rcmulr 16136  Scalarcsca 16138   ·𝑠 cvsca 16139  ·𝑖cip 16140  subringAlg csra 19362 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-ndx 16054  df-slot 16055  df-sets 16058  df-vsca 16152  df-ip 16153  df-sra 19366 This theorem is referenced by:  sralmod  19381  rlmvsca  19396  sraassa  19519  sranlm  22681
 Copyright terms: Public domain W3C validator