MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sravsca Structured version   Visualization version   GIF version

Theorem sravsca 19376
Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
sravsca (𝜑 → (.r𝑊) = ( ·𝑠𝐴))

Proof of Theorem sravsca
StepHypRef Expression
1 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
21adantl 473 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
4 sraval 19370 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
53, 4sylan2 492 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
62, 5eqtrd 2786 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
76fveq2d 6348 . . 3 ((𝑊 ∈ V ∧ 𝜑) → ( ·𝑠𝐴) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
8 ovex 6833 . . . . 5 (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V
9 fvex 6354 . . . . 5 (.r𝑊) ∈ V
10 vscaid 16210 . . . . . 6 ·𝑠 = Slot ( ·𝑠 ‘ndx)
1110setsid 16108 . . . . 5 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (.r𝑊) = ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)))
128, 9, 11mp2an 710 . . . 4 (.r𝑊) = ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
13 6re 11285 . . . . . . 7 6 ∈ ℝ
14 6lt8 11400 . . . . . . 7 6 < 8
1513, 14ltneii 10334 . . . . . 6 6 ≠ 8
16 vscandx 16209 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
17 ipndx 16216 . . . . . . 7 (·𝑖‘ndx) = 8
1816, 17neeq12i 2990 . . . . . 6 (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ↔ 6 ≠ 8)
1915, 18mpbir 221 . . . . 5 ( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx)
2010, 19setsnid 16109 . . . 4 ( ·𝑠 ‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2112, 20eqtri 2774 . . 3 (.r𝑊) = ( ·𝑠 ‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
227, 21syl6reqr 2805 . 2 ((𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ( ·𝑠𝐴))
2310str0 16105 . . 3 ∅ = ( ·𝑠 ‘∅)
24 fvprc 6338 . . . 4 𝑊 ∈ V → (.r𝑊) = ∅)
2524adantr 472 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ∅)
26 fvprc 6338 . . . . . . 7 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅)
2726fveq1d 6346 . . . . . 6 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = (∅‘𝑆))
28 0fv 6380 . . . . . 6 (∅‘𝑆) = ∅
2927, 28syl6eq 2802 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
301, 29sylan9eqr 2808 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
3130fveq2d 6348 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → ( ·𝑠𝐴) = ( ·𝑠 ‘∅))
3223, 25, 313eqtr4a 2812 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (.r𝑊) = ( ·𝑠𝐴))
3322, 32pm2.61ian 866 1 (𝜑 → (.r𝑊) = ( ·𝑠𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1624  wcel 2131  wne 2924  Vcvv 3332  wss 3707  c0 4050  cop 4319  cfv 6041  (class class class)co 6805  6c6 11258  8c8 11260  ndxcnx 16048   sSet csts 16049  Basecbs 16051  s cress 16052  .rcmulr 16136  Scalarcsca 16138   ·𝑠 cvsca 16139  ·𝑖cip 16140  subringAlg csra 19362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-ndx 16054  df-slot 16055  df-sets 16058  df-vsca 16152  df-ip 16153  df-sra 19366
This theorem is referenced by:  sralmod  19381  rlmvsca  19396  sraassa  19519  sranlm  22681
  Copyright terms: Public domain W3C validator