MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraval Structured version   Visualization version   GIF version

Theorem sraval 19378
Description: Lemma for srabase 19380 through sravsca 19384. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
sraval ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))

Proof of Theorem sraval
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3352 . . . 4 (𝑊𝑉𝑊 ∈ V)
21adantr 472 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑊 ∈ V)
3 fveq2 6352 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
43pweqd 4307 . . . . 5 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝑊))
5 id 22 . . . . . . . 8 (𝑤 = 𝑊𝑤 = 𝑊)
6 oveq1 6820 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤s 𝑠) = (𝑊s 𝑠))
76opeq2d 4560 . . . . . . . 8 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩ = ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩)
85, 7oveq12d 6831 . . . . . . 7 (𝑤 = 𝑊 → (𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩))
9 fveq2 6352 . . . . . . . 8 (𝑤 = 𝑊 → (.r𝑤) = (.r𝑊))
109opeq2d 4560 . . . . . . 7 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩ = ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)
118, 10oveq12d 6831 . . . . . 6 (𝑤 = 𝑊 → ((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
129opeq2d 4560 . . . . . 6 (𝑤 = 𝑊 → ⟨(·𝑖‘ndx), (.r𝑤)⟩ = ⟨(·𝑖‘ndx), (.r𝑊)⟩)
1311, 12oveq12d 6831 . . . . 5 (𝑤 = 𝑊 → (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
144, 13mpteq12dv 4885 . . . 4 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
15 df-sra 19374 . . . 4 subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)))
16 fvex 6362 . . . . . 6 (Base‘𝑊) ∈ V
1716pwex 4997 . . . . 5 𝒫 (Base‘𝑊) ∈ V
1817mptex 6650 . . . 4 (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)) ∈ V
1914, 15, 18fvmpt 6444 . . 3 (𝑊 ∈ V → (subringAlg ‘𝑊) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
202, 19syl 17 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (subringAlg ‘𝑊) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
21 simpr 479 . . . . . . 7 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
2221oveq2d 6829 . . . . . 6 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (𝑊s 𝑠) = (𝑊s 𝑆))
2322opeq2d 4560 . . . . 5 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩ = ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)
2423oveq2d 6829 . . . 4 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
2524oveq1d 6828 . . 3 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
2625oveq1d 6828 . 2 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
27 simpr 479 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ⊆ (Base‘𝑊))
2816elpw2 4977 . . 3 (𝑆 ∈ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊))
2927, 28sylibr 224 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ∈ 𝒫 (Base‘𝑊))
30 ovexd 6843 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) ∈ V)
3120, 26, 29, 30fvmptd 6450 1 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  wss 3715  𝒫 cpw 4302  cop 4327  cmpt 4881  cfv 6049  (class class class)co 6813  ndxcnx 16056   sSet csts 16057  Basecbs 16059  s cress 16060  .rcmulr 16144  Scalarcsca 16146   ·𝑠 cvsca 16147  ·𝑖cip 16148  subringAlg csra 19370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-sra 19374
This theorem is referenced by:  sralem  19379  srasca  19383  sravsca  19384  sraip  19385  rlmval2  19396
  Copyright terms: Public domain W3C validator