Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  srasca Structured version   Visualization version   GIF version

Theorem srasca 19395
 Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
Assertion
Ref Expression
srasca (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))

Proof of Theorem srasca
StepHypRef Expression
1 scaid 16221 . . . . 5 Scalar = Slot (Scalar‘ndx)
2 5re 11300 . . . . . . 7 5 ∈ ℝ
3 5lt6 11405 . . . . . . 7 5 < 6
42, 3ltneii 10351 . . . . . 6 5 ≠ 6
5 scandx 16220 . . . . . . 7 (Scalar‘ndx) = 5
6 vscandx 16222 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
75, 6neeq12i 3008 . . . . . 6 ((Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 5 ≠ 6)
84, 7mpbir 221 . . . . 5 (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx)
91, 8setsnid 16121 . . . 4 (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (Scalar‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
10 5lt8 11418 . . . . . . 7 5 < 8
112, 10ltneii 10351 . . . . . 6 5 ≠ 8
12 ipndx 16229 . . . . . . 7 (·𝑖‘ndx) = 8
135, 12neeq12i 3008 . . . . . 6 ((Scalar‘ndx) ≠ (·𝑖‘ndx) ↔ 5 ≠ 8)
1411, 13mpbir 221 . . . . 5 (Scalar‘ndx) ≠ (·𝑖‘ndx)
151, 14setsnid 16121 . . . 4 (Scalar‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
169, 15eqtri 2792 . . 3 (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
17 ovexd 6824 . . . 4 (𝜑 → (𝑊s 𝑆) ∈ V)
181setsid 16120 . . . 4 ((𝑊 ∈ V ∧ (𝑊s 𝑆) ∈ V) → (𝑊s 𝑆) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
1917, 18sylan2 572 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = (Scalar‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)))
20 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
2120adantl 467 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
22 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
23 sraval 19390 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2422, 23sylan2 572 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2521, 24eqtrd 2804 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
2625fveq2d 6336 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
2716, 19, 263eqtr4a 2830 . 2 ((𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = (Scalar‘𝐴))
281str0 16117 . . 3 ∅ = (Scalar‘∅)
29 reldmress 16132 . . . . 5 Rel dom ↾s
3029ovprc1 6828 . . . 4 𝑊 ∈ V → (𝑊s 𝑆) = ∅)
3130adantr 466 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = ∅)
32 fvprc 6326 . . . . . . 7 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅)
3332fveq1d 6334 . . . . . 6 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = (∅‘𝑆))
34 0fv 6368 . . . . . 6 (∅‘𝑆) = ∅
3533, 34syl6eq 2820 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
3620, 35sylan9eqr 2826 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
3736fveq2d 6336 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (Scalar‘𝐴) = (Scalar‘∅))
3828, 31, 373eqtr4a 2830 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝑊s 𝑆) = (Scalar‘𝐴))
3927, 38pm2.61ian 795 1 (𝜑 → (𝑊s 𝑆) = (Scalar‘𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144   ≠ wne 2942  Vcvv 3349   ⊆ wss 3721  ∅c0 4061  ⟨cop 4320  ‘cfv 6031  (class class class)co 6792  5c5 11274  6c6 11275  8c8 11277  ndxcnx 16060   sSet csts 16061  Basecbs 16063   ↾s cress 16064  .rcmulr 16149  Scalarcsca 16151   ·𝑠 cvsca 16152  ·𝑖cip 16153  subringAlg csra 19382 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-ndx 16066  df-slot 16067  df-sets 16070  df-ress 16071  df-sca 16164  df-vsca 16165  df-ip 16166  df-sra 19386 This theorem is referenced by:  sralmod  19401  rlmsca  19414  rlmsca2  19415  sraassa  19539  frlmip  20333  sranlm  22707  srabn  23374  rrxprds  23395
 Copyright terms: Public domain W3C validator