MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sranlm Structured version   Visualization version   GIF version

Theorem sranlm 22689
Description: The subring algebra over a normed ring is a normed left module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
sranlm.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
Assertion
Ref Expression
sranlm ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod)

Proof of Theorem sranlm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgngp 22667 . . . . 5 (𝑊 ∈ NrmRing → 𝑊 ∈ NrmGrp)
21adantr 472 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑊 ∈ NrmGrp)
3 eqidd 2761 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝑊))
4 sranlm.a . . . . . . 7 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
54a1i 11 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
6 eqid 2760 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
76subrgss 18983 . . . . . . 7 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
87adantl 473 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 ⊆ (Base‘𝑊))
95, 8srabase 19380 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘𝑊) = (Base‘𝐴))
105, 8sraaddg 19381 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (+g𝑊) = (+g𝐴))
1110oveqdr 6837 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐴)𝑦))
125, 8srads 19388 . . . . . 6 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (dist‘𝑊) = (dist‘𝐴))
1312reseq1d 5550 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝐴) ↾ ((Base‘𝑊) × (Base‘𝑊))))
145, 8sratopn 19387 . . . . 5 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (TopOpen‘𝑊) = (TopOpen‘𝐴))
153, 9, 11, 13, 14ngppropd 22642 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊 ∈ NrmGrp ↔ 𝐴 ∈ NrmGrp))
162, 15mpbid 222 . . 3 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmGrp)
174sralmod 19389 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
1817adantl 473 . . 3 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ LMod)
195, 8srasca 19383 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊s 𝑆) = (Scalar‘𝐴))
20 eqid 2760 . . . . 5 (𝑊s 𝑆) = (𝑊s 𝑆)
2120subrgnrg 22678 . . . 4 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑊s 𝑆) ∈ NrmRing)
2219, 21eqeltrrd 2840 . . 3 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Scalar‘𝐴) ∈ NrmRing)
2316, 18, 223jca 1123 . 2 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝐴 ∈ NrmGrp ∧ 𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ NrmRing))
24 eqid 2760 . . . . . . . 8 (norm‘𝑊) = (norm‘𝑊)
25 eqid 2760 . . . . . . . 8 (AbsVal‘𝑊) = (AbsVal‘𝑊)
2624, 25nrgabv 22666 . . . . . . 7 (𝑊 ∈ NrmRing → (norm‘𝑊) ∈ (AbsVal‘𝑊))
2726ad2antrr 764 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (norm‘𝑊) ∈ (AbsVal‘𝑊))
288adantr 472 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑆 ⊆ (Base‘𝑊))
29 simprl 811 . . . . . . . 8 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘𝐴)))
3020subrgbas 18991 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 = (Base‘(𝑊s 𝑆)))
3130adantl 473 . . . . . . . . . 10 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 = (Base‘(𝑊s 𝑆)))
3219fveq2d 6356 . . . . . . . . . 10 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (Base‘(𝑊s 𝑆)) = (Base‘(Scalar‘𝐴)))
3331, 32eqtrd 2794 . . . . . . . . 9 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝑆 = (Base‘(Scalar‘𝐴)))
3433adantr 472 . . . . . . . 8 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑆 = (Base‘(Scalar‘𝐴)))
3529, 34eleqtrrd 2842 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥𝑆)
3628, 35sseldd 3745 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘𝑊))
37 simprr 813 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
389adantr 472 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘𝑊) = (Base‘𝐴))
3937, 38eleqtrrd 2842 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝑊))
40 eqid 2760 . . . . . . 7 (.r𝑊) = (.r𝑊)
4125, 6, 40abvmul 19031 . . . . . 6 (((norm‘𝑊) ∈ (AbsVal‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((norm‘𝑊)‘(𝑥(.r𝑊)𝑦)) = (((norm‘𝑊)‘𝑥) · ((norm‘𝑊)‘𝑦)))
4227, 36, 39, 41syl3anc 1477 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝑊)‘(𝑥(.r𝑊)𝑦)) = (((norm‘𝑊)‘𝑥) · ((norm‘𝑊)‘𝑦)))
439, 10, 12nmpropd 22599 . . . . . . 7 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (norm‘𝑊) = (norm‘𝐴))
4443adantr 472 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (norm‘𝑊) = (norm‘𝐴))
455, 8sravsca 19384 . . . . . . 7 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → (.r𝑊) = ( ·𝑠𝐴))
4645oveqdr 6837 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(.r𝑊)𝑦) = (𝑥( ·𝑠𝐴)𝑦))
4744, 46fveq12d 6358 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝑊)‘(𝑥(.r𝑊)𝑦)) = ((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)))
4842, 47eqtr3d 2796 . . . 4 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (((norm‘𝑊)‘𝑥) · ((norm‘𝑊)‘𝑦)) = ((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)))
49 subrgsubg 18988 . . . . . . . 8 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ∈ (SubGrp‘𝑊))
5049ad2antlr 765 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑆 ∈ (SubGrp‘𝑊))
51 eqid 2760 . . . . . . . 8 (norm‘(𝑊s 𝑆)) = (norm‘(𝑊s 𝑆))
5220, 24, 51subgnm2 22639 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝑊) ∧ 𝑥𝑆) → ((norm‘(𝑊s 𝑆))‘𝑥) = ((norm‘𝑊)‘𝑥))
5350, 35, 52syl2anc 696 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘(𝑊s 𝑆))‘𝑥) = ((norm‘𝑊)‘𝑥))
5419adantr 472 . . . . . . . 8 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑊s 𝑆) = (Scalar‘𝐴))
5554fveq2d 6356 . . . . . . 7 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (norm‘(𝑊s 𝑆)) = (norm‘(Scalar‘𝐴)))
5655fveq1d 6354 . . . . . 6 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘(𝑊s 𝑆))‘𝑥) = ((norm‘(Scalar‘𝐴))‘𝑥))
5753, 56eqtr3d 2796 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝑊)‘𝑥) = ((norm‘(Scalar‘𝐴))‘𝑥))
5844fveq1d 6354 . . . . 5 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝑊)‘𝑦) = ((norm‘𝐴)‘𝑦))
5957, 58oveq12d 6831 . . . 4 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (((norm‘𝑊)‘𝑥) · ((norm‘𝑊)‘𝑦)) = (((norm‘(Scalar‘𝐴))‘𝑥) · ((norm‘𝐴)‘𝑦)))
6048, 59eqtr3d 2796 . . 3 (((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → ((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)) = (((norm‘(Scalar‘𝐴))‘𝑥) · ((norm‘𝐴)‘𝑦)))
6160ralrimivva 3109 . 2 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → ∀𝑥 ∈ (Base‘(Scalar‘𝐴))∀𝑦 ∈ (Base‘𝐴)((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)) = (((norm‘(Scalar‘𝐴))‘𝑥) · ((norm‘𝐴)‘𝑦)))
62 eqid 2760 . . 3 (Base‘𝐴) = (Base‘𝐴)
63 eqid 2760 . . 3 (norm‘𝐴) = (norm‘𝐴)
64 eqid 2760 . . 3 ( ·𝑠𝐴) = ( ·𝑠𝐴)
65 eqid 2760 . . 3 (Scalar‘𝐴) = (Scalar‘𝐴)
66 eqid 2760 . . 3 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
67 eqid 2760 . . 3 (norm‘(Scalar‘𝐴)) = (norm‘(Scalar‘𝐴))
6862, 63, 64, 65, 66, 67isnlm 22680 . 2 (𝐴 ∈ NrmMod ↔ ((𝐴 ∈ NrmGrp ∧ 𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐴))∀𝑦 ∈ (Base‘𝐴)((norm‘𝐴)‘(𝑥( ·𝑠𝐴)𝑦)) = (((norm‘(Scalar‘𝐴))‘𝑥) · ((norm‘𝐴)‘𝑦))))
6923, 61, 68sylanbrc 701 1 ((𝑊 ∈ NrmRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wss 3715   × cxp 5264  cfv 6049  (class class class)co 6813   · cmul 10133  Basecbs 16059  s cress 16060  +gcplusg 16143  .rcmulr 16144  Scalarcsca 16146   ·𝑠 cvsca 16147  distcds 16152  SubGrpcsubg 17789  SubRingcsubrg 18978  AbsValcabv 19018  LModclmod 19065  subringAlg csra 19370  normcnm 22582  NrmGrpcngp 22583  NrmRingcnrg 22585  NrmModcnlm 22586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ico 12374  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ds 16166  df-rest 16285  df-topn 16286  df-0g 16304  df-topgen 16306  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-mgp 18690  df-ur 18702  df-ring 18749  df-subrg 18980  df-abv 19019  df-lmod 19067  df-sra 19374  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-xms 22326  df-ms 22327  df-nm 22588  df-ngp 22589  df-nrg 22591  df-nlm 22592
This theorem is referenced by:  rlmnlm  22693  srabn  23356
  Copyright terms: Public domain W3C validator