MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralmod Structured version   Visualization version   GIF version

Theorem sralmod 19409
Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
sralmod.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
Assertion
Ref Expression
sralmod (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)

Proof of Theorem sralmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sralmod.a . . . 4 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
21a1i 11 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 eqid 2760 . . . 4 (Base‘𝑊) = (Base‘𝑊)
43subrgss 19003 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
52, 4srabase 19400 . 2 (𝑆 ∈ (SubRing‘𝑊) → (Base‘𝑊) = (Base‘𝐴))
62, 4sraaddg 19401 . 2 (𝑆 ∈ (SubRing‘𝑊) → (+g𝑊) = (+g𝐴))
72, 4srasca 19403 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑊s 𝑆) = (Scalar‘𝐴))
82, 4sravsca 19404 . 2 (𝑆 ∈ (SubRing‘𝑊) → (.r𝑊) = ( ·𝑠𝐴))
9 eqid 2760 . . 3 (𝑊s 𝑆) = (𝑊s 𝑆)
109, 3ressbas 16152 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑆 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝑆)))
11 eqid 2760 . . 3 (+g𝑊) = (+g𝑊)
129, 11ressplusg 16215 . 2 (𝑆 ∈ (SubRing‘𝑊) → (+g𝑊) = (+g‘(𝑊s 𝑆)))
13 eqid 2760 . . 3 (.r𝑊) = (.r𝑊)
149, 13ressmulr 16228 . 2 (𝑆 ∈ (SubRing‘𝑊) → (.r𝑊) = (.r‘(𝑊s 𝑆)))
15 eqid 2760 . . 3 (1r𝑊) = (1r𝑊)
169, 15subrg1 19012 . 2 (𝑆 ∈ (SubRing‘𝑊) → (1r𝑊) = (1r‘(𝑊s 𝑆)))
179subrgring 19005 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑊s 𝑆) ∈ Ring)
18 subrgrcl 19007 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑊 ∈ Ring)
19 ringgrp 18772 . . . 4 (𝑊 ∈ Ring → 𝑊 ∈ Grp)
2018, 19syl 17 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑊 ∈ Grp)
21 eqidd 2761 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → (Base‘𝑊) = (Base‘𝑊))
226oveqdr 6838 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐴)𝑦))
2321, 5, 22grppropd 17658 . . 3 (𝑆 ∈ (SubRing‘𝑊) → (𝑊 ∈ Grp ↔ 𝐴 ∈ Grp))
2420, 23mpbid 222 . 2 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ Grp)
25183ad2ant1 1128 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑊 ∈ Ring)
26 inss2 3977 . . . . 5 (𝑆 ∩ (Base‘𝑊)) ⊆ (Base‘𝑊)
2726sseli 3740 . . . 4 (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
28273ad2ant2 1129 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
29 simp3 1133 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊))
303, 13ringcl 18781 . . 3 ((𝑊 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) ∈ (Base‘𝑊))
3125, 28, 29, 30syl3anc 1477 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) ∈ (Base‘𝑊))
3218adantr 472 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
33 simpr1 1234 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)))
3426, 33sseldi 3742 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
35 simpr2 1236 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
36 simpr3 1238 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
373, 11, 13ringdi 18786 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)(𝑦(+g𝑊)𝑧)) = ((𝑥(.r𝑊)𝑦)(+g𝑊)(𝑥(.r𝑊)𝑧)))
3832, 34, 35, 36, 37syl13anc 1479 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)(𝑦(+g𝑊)𝑧)) = ((𝑥(.r𝑊)𝑦)(+g𝑊)(𝑥(.r𝑊)𝑧)))
3918adantr 472 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
40 simpr1 1234 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)))
4126, 40sseldi 3742 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
42 simpr2 1236 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)))
4326, 42sseldi 3742 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
44 simpr3 1238 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
453, 11, 13ringdir 18787 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)(.r𝑊)𝑧) = ((𝑥(.r𝑊)𝑧)(+g𝑊)(𝑦(.r𝑊)𝑧)))
4639, 41, 43, 44, 45syl13anc 1479 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)(.r𝑊)𝑧) = ((𝑥(.r𝑊)𝑧)(+g𝑊)(𝑦(.r𝑊)𝑧)))
473, 13ringass 18784 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
4839, 41, 43, 44, 47syl13anc 1479 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
493, 13, 15ringlidm 18791 . . 3 ((𝑊 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑊)) → ((1r𝑊)(.r𝑊)𝑥) = 𝑥)
5018, 49sylan 489 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊)) → ((1r𝑊)(.r𝑊)𝑥) = 𝑥)
515, 6, 7, 8, 10, 12, 14, 16, 17, 24, 31, 38, 46, 48, 50islmodd 19091 1 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  cin 3714  cfv 6049  (class class class)co 6814  Basecbs 16079  s cress 16080  +gcplusg 16163  .rcmulr 16164  Grpcgrp 17643  1rcur 18721  Ringcrg 18767  SubRingcsubrg 18998  LModclmod 19085  subringAlg csra 19390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-ip 16181  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-subg 17812  df-mgp 18710  df-ur 18722  df-ring 18769  df-subrg 19000  df-lmod 19087  df-sra 19394
This theorem is referenced by:  rlmlmod  19427  sraassa  19547  sranlm  22709
  Copyright terms: Public domain W3C validator