![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqxpexg | Structured version Visualization version GIF version |
Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
sqxpexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7125 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
2 | 1 | anidms 680 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 Vcvv 3340 × cxp 5264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-opab 4865 df-xp 5272 df-rel 5273 |
This theorem is referenced by: resiexg 7267 erex 7935 hartogslem2 8613 harwdom 8660 dfac8b 9044 ac10ct 9047 canthwe 9665 brcic 16659 ciclcl 16663 cicrcl 16664 cicer 16667 ssclem 16680 estrccofval 16970 ipolerval 17357 mat0op 20427 matecl 20433 matlmod 20437 mattposvs 20463 ustval 22207 isust 22208 restutopopn 22243 ressuss 22268 ispsmet 22310 ismet 22329 isxmet 22330 bj-diagval 33401 fin2so 33709 rtrclexlem 38425 isclintop 42353 isassintop 42356 dfrngc2 42482 rngccofvalALTV 42497 dfringc2 42528 rngcresringcat 42540 ringccofvalALTV 42560 |
Copyright terms: Public domain | W3C validator |