![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqxpeqd | Structured version Visualization version GIF version |
Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sqxpeqd | ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1, 1 | xpeq12d 5297 | 1 ⊢ (𝜑 → (𝐴 × 𝐴) = (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 × cxp 5264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-opab 4865 df-xp 5272 |
This theorem is referenced by: xpcoid 5837 hartogslem1 8612 isfin6 9314 fpwwe2cbv 9644 fpwwe2lem2 9646 fpwwe2lem3 9647 fpwwe2lem8 9651 fpwwe2lem12 9655 fpwwe2lem13 9656 fpwwe2 9657 fpwwecbv 9658 fpwwelem 9659 canthwelem 9664 canthwe 9665 pwfseqlem4 9676 prdsval 16317 imasval 16373 imasaddfnlem 16390 comfffval 16559 comfeq 16567 oppcval 16574 sscfn1 16678 sscfn2 16679 isssc 16681 ssceq 16687 reschomf 16692 isfunc 16725 idfuval 16737 funcres 16757 funcpropd 16761 fucval 16819 fucpropd 16838 homafval 16880 setcval 16928 catcval 16947 estrcval 16965 estrchomfeqhom 16977 hofval 17093 hofpropd 17108 islat 17248 istsr 17418 cnvtsr 17423 isdir 17433 tsrdir 17439 intopsn 17454 frmdval 17589 resgrpplusfrn 17637 opsrval 19676 matval 20419 ustval 22207 trust 22234 utop2nei 22255 utop3cls 22256 utopreg 22257 ussval 22264 ressuss 22268 tususs 22275 fmucnd 22297 cfilufg 22298 trcfilu 22299 neipcfilu 22301 ispsmet 22310 prdsdsf 22373 prdsxmet 22375 ressprdsds 22377 xpsdsfn2 22384 xpsxmetlem 22385 xpsmet 22388 isxms 22453 isms 22455 xmspropd 22479 mspropd 22480 setsxms 22485 setsms 22486 imasf1oxms 22495 imasf1oms 22496 ressxms 22531 ressms 22532 prdsxmslem2 22535 metuval 22555 nmpropd2 22600 ngppropd 22642 tngngp2 22657 pi1addf 23047 pi1addval 23048 iscms 23342 cmspropd 23346 cmsss 23347 rrxds 23381 rrxmfval 23389 minveclem3a 23398 dvlip2 23957 dchrval 25158 brcgr 25979 issh 28374 qtophaus 30212 prsssdm 30272 ordtrestNEW 30276 ordtrest2NEW 30278 isrrext 30353 sibfof 30711 mdvval 31708 msrval 31742 mthmpps 31786 madeval 32241 funtransport 32444 fvtransport 32445 bj-diagval 33401 prdsbnd2 33907 cnpwstotbnd 33909 isrngo 34009 isrngod 34010 rngosn3 34036 isdivrngo 34062 drngoi 34063 isgrpda 34067 ldualset 34915 aomclem8 38133 intopval 42348 rngcvalALTV 42471 rngcval 42472 rnghmsubcsetclem1 42485 rngccat 42488 rngchomrnghmresALTV 42506 ringcvalALTV 42517 ringcval 42518 rhmsubcsetclem1 42531 ringccat 42534 rhmsubcrngclem1 42537 rhmsubcrngc 42539 srhmsubc 42586 rhmsubc 42600 srhmsubcALTV 42604 elpglem3 42969 |
Copyright terms: Public domain | W3C validator |