![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqsqrtd | Structured version Visualization version GIF version |
Description: Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
sqsqrtd | ⊢ (𝜑 → ((√‘𝐴)↑2) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | sqrtth 14324 | . 2 ⊢ (𝐴 ∈ ℂ → ((√‘𝐴)↑2) = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((√‘𝐴)↑2) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ‘cfv 6050 (class class class)co 6815 ℂcc 10147 2c2 11283 ↑cexp 13075 √csqrt 14193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-sup 8516 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-seq 13017 df-exp 13076 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 |
This theorem is referenced by: msqsqrtd 14399 sqr00d 14400 sqrt2irrlem 15197 zsqrtelqelz 15689 nonsq 15690 prmreclem3 15845 nmsq 23215 cphipipcj 23221 ipcau2 23254 tchcphlem1 23255 tchcph 23257 minveclem3b 23420 efif1olem3 24511 efif1olem4 24512 cxpsqrt 24670 loglesqrt 24720 quad 24788 cubic 24797 quartlem4 24808 quart 24809 asinlem 24816 asinlem2 24817 efiatan2 24865 cosatan 24869 cosatanne0 24870 atans2 24879 chpub 25166 chtppilim 25385 rplogsumlem1 25394 dchrisum0flblem1 25418 dchrisum0flblem2 25419 dchrisum0fno1 25421 sin2h 33731 cos2h 33732 areacirclem1 33832 areacirclem5 33836 pell1234qrne0 37938 pell1234qrreccl 37939 pell1234qrmulcl 37940 pell14qrgt0 37944 pell14qrdich 37954 pell1qrgaplem 37958 pell14qrgapw 37961 pellqrex 37964 rmxyneg 38006 jm2.22 38083 |
Copyright terms: Public domain | W3C validator |