MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtval Structured version   Visualization version   GIF version

Theorem sqrtval 14021
Description: Value of square root function. (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
sqrtval (𝐴 ∈ ℂ → (√‘𝐴) = (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqrtval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2662 . . . 4 (𝑦 = 𝐴 → ((𝑥↑2) = 𝑦 ↔ (𝑥↑2) = 𝐴))
213anbi1d 1443 . . 3 (𝑦 = 𝐴 → (((𝑥↑2) = 𝑦 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
32riotabidv 6653 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℂ ((𝑥↑2) = 𝑦 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
4 df-sqrt 14019 . 2 √ = (𝑦 ∈ ℂ ↦ (𝑥 ∈ ℂ ((𝑥↑2) = 𝑦 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
5 riotaex 6655 . 2 (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) ∈ V
63, 4, 5fvmpt 6321 1 (𝐴 ∈ ℂ → (√‘𝐴) = (𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1054   = wceq 1523  wcel 2030  wnel 2926   class class class wbr 4685  cfv 5926  crio 6650  (class class class)co 6690  cc 9972  0cc0 9974  ici 9976   · cmul 9979  cle 10113  2c2 11108  +crp 11870  cexp 12900  cre 13881  csqrt 14017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-riota 6651  df-sqrt 14019
This theorem is referenced by:  sqrt0  14026  resqrtcl  14038  resqrtthlem  14039  sqrtneg  14052  sqrtcl  14145  sqrtthlem  14146
  Copyright terms: Public domain W3C validator