Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtpwpw2p Structured version   Visualization version   GIF version

Theorem sqrtpwpw2p 41975
Description: The floor of the square root of 2 to the power of 2 to the power of a positive integer plus a bounded nonnegative integer. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
sqrtpwpw2p ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1))))

Proof of Theorem sqrtpwpw2p
StepHypRef Expression
1 nncn 11234 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
21adantr 466 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
3 npcan1 10661 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
42, 3syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − 1) + 1) = 𝑁)
54eqcomd 2777 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑁 = ((𝑁 − 1) + 1))
65oveq2d 6812 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑𝑁) = (2↑((𝑁 − 1) + 1)))
7 2cnd 11299 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℂ)
8 nnm1nn0 11541 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
98adantr 466 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 − 1) ∈ ℕ0)
107, 9expp1d 13216 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑((𝑁 − 1) + 1)) = ((2↑(𝑁 − 1)) · 2))
116, 10eqtrd 2805 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑𝑁) = ((2↑(𝑁 − 1)) · 2))
1211oveq2d 6812 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) = (2↑((2↑(𝑁 − 1)) · 2)))
13 2nn0 11516 . . . . . . . . . 10 2 ∈ ℕ0
1413a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℕ0)
1513a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
1615, 8nn0expcld 13238 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℕ0)
1716adantr 466 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑁 − 1)) ∈ ℕ0)
187, 14, 17expmuld 13218 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑((2↑(𝑁 − 1)) · 2)) = ((2↑(2↑(𝑁 − 1)))↑2))
1912, 18eqtrd 2805 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) = ((2↑(2↑(𝑁 − 1)))↑2))
20 nn0ge0 11525 . . . . . . . . 9 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2120adantl 467 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 0 ≤ 𝑀)
22 nnnn0 11506 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2315, 22nn0expcld 13238 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
2415, 23nn0expcld 13238 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ0)
2524nn0red 11559 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℝ)
26 nn0re 11508 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
2725, 26anim12i 600 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑𝑁)) ∈ ℝ ∧ 𝑀 ∈ ℝ))
28 addge01 10744 . . . . . . . . 9 (((2↑(2↑𝑁)) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ (2↑(2↑𝑁)) ≤ ((2↑(2↑𝑁)) + 𝑀)))
2927, 28syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝑀 ↔ (2↑(2↑𝑁)) ≤ ((2↑(2↑𝑁)) + 𝑀)))
3021, 29mpbid 222 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) ≤ ((2↑(2↑𝑁)) + 𝑀))
3119, 30eqbrtrrd 4811 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑(𝑁 − 1)))↑2) ≤ ((2↑(2↑𝑁)) + 𝑀))
3224adantr 466 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℕ0)
33 simpr 471 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
3432, 33nn0addcld 11562 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑𝑁)) + 𝑀) ∈ ℕ0)
35 nn0re 11508 . . . . . . . . 9 (((2↑(2↑𝑁)) + 𝑀) ∈ ℕ0 → ((2↑(2↑𝑁)) + 𝑀) ∈ ℝ)
36 nn0ge0 11525 . . . . . . . . 9 (((2↑(2↑𝑁)) + 𝑀) ∈ ℕ0 → 0 ≤ ((2↑(2↑𝑁)) + 𝑀))
3735, 36jca 501 . . . . . . . 8 (((2↑(2↑𝑁)) + 𝑀) ∈ ℕ0 → (((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)))
3834, 37syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)))
39 resqrtth 14204 . . . . . . 7 ((((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)) → ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) = ((2↑(2↑𝑁)) + 𝑀))
4038, 39syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) = ((2↑(2↑𝑁)) + 𝑀))
4131, 40breqtrrd 4815 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑(𝑁 − 1)))↑2) ≤ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2))
4215, 16nn0expcld 13238 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 − 1))) ∈ ℕ0)
43 nn0re 11508 . . . . . . . . 9 ((2↑(2↑(𝑁 − 1))) ∈ ℕ0 → (2↑(2↑(𝑁 − 1))) ∈ ℝ)
44 nn0ge0 11525 . . . . . . . . 9 ((2↑(2↑(𝑁 − 1))) ∈ ℕ0 → 0 ≤ (2↑(2↑(𝑁 − 1))))
4543, 44jca 501 . . . . . . . 8 ((2↑(2↑(𝑁 − 1))) ∈ ℕ0 → ((2↑(2↑(𝑁 − 1))) ∈ ℝ ∧ 0 ≤ (2↑(2↑(𝑁 − 1)))))
4642, 45syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((2↑(2↑(𝑁 − 1))) ∈ ℝ ∧ 0 ≤ (2↑(2↑(𝑁 − 1)))))
4746adantr 466 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑(𝑁 − 1))) ∈ ℝ ∧ 0 ≤ (2↑(2↑(𝑁 − 1)))))
48 resqrtcl 14202 . . . . . . 7 ((((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)) → (√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ)
4938, 48syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ)
50 sqrtge0 14206 . . . . . . 7 ((((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)) → 0 ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))
5138, 50syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 0 ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))
52 le2sq 13145 . . . . . 6 ((((2↑(2↑(𝑁 − 1))) ∈ ℝ ∧ 0 ≤ (2↑(2↑(𝑁 − 1)))) ∧ ((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ 0 ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))) → ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ↔ ((2↑(2↑(𝑁 − 1)))↑2) ≤ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2)))
5347, 49, 51, 52syl12anc 1474 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ↔ ((2↑(2↑(𝑁 − 1)))↑2) ≤ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2)))
5441, 53mpbird 247 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))
55543adant3 1126 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))
5626adantl 467 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℝ)
57 peano2nn0 11540 . . . . . . . . . . . . 13 ((2↑(𝑁 − 1)) ∈ ℕ0 → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
5816, 57syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
5915, 58nn0expcld 13238 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0)
6059adantr 466 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0)
61 peano2nn0 11540 . . . . . . . . . 10 ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0 → ((2↑((2↑(𝑁 − 1)) + 1)) + 1) ∈ ℕ0)
6260, 61syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑((2↑(𝑁 − 1)) + 1)) + 1) ∈ ℕ0)
6362nn0red 11559 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑((2↑(𝑁 − 1)) + 1)) + 1) ∈ ℝ)
6432nn0red 11559 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℝ)
65 axltadd 10317 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((2↑((2↑(𝑁 − 1)) + 1)) + 1) ∈ ℝ ∧ (2↑(2↑𝑁)) ∈ ℝ) → (𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1) → ((2↑(2↑𝑁)) + 𝑀) < ((2↑(2↑𝑁)) + ((2↑((2↑(𝑁 − 1)) + 1)) + 1))))
6656, 63, 64, 65syl3anc 1476 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1) → ((2↑(2↑𝑁)) + 𝑀) < ((2↑(2↑𝑁)) + ((2↑((2↑(𝑁 − 1)) + 1)) + 1))))
67663impia 1109 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((2↑(2↑𝑁)) + 𝑀) < ((2↑(2↑𝑁)) + ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
6824nn0cnd 11560 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℂ)
69683ad2ant1 1127 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (2↑(2↑𝑁)) ∈ ℂ)
7059nn0cnd 11560 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℂ)
71703ad2ant1 1127 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℂ)
72 1cnd 10262 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → 1 ∈ ℂ)
7369, 71, 72addassd 10268 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1) = ((2↑(2↑𝑁)) + ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
7467, 73breqtrrd 4815 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((2↑(2↑𝑁)) + 𝑀) < (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1))
7542nn0cnd 11560 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 − 1))) ∈ ℂ)
76 binom21 13187 . . . . . . . . . 10 ((2↑(2↑(𝑁 − 1))) ∈ ℂ → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
7775, 76syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
78 2cnd 11299 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℂ)
7978, 15, 16expmuld 13218 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) · 2)) = ((2↑(2↑(𝑁 − 1)))↑2))
8078, 8expp1d 13216 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2↑((𝑁 − 1) + 1)) = ((2↑(𝑁 − 1)) · 2))
811, 3syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
8281oveq2d 6812 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2↑((𝑁 − 1) + 1)) = (2↑𝑁))
8380, 82eqtr3d 2807 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) · 2) = (2↑𝑁))
8483oveq2d 6812 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) · 2)) = (2↑(2↑𝑁)))
8579, 84eqtr3d 2807 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2↑(2↑(𝑁 − 1)))↑2) = (2↑(2↑𝑁)))
8678, 75mulcomd 10267 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) · 2))
8778, 16expp1d 13216 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) = ((2↑(2↑(𝑁 − 1))) · 2))
8886, 87eqtr4d 2808 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · (2↑(2↑(𝑁 − 1)))) = (2↑((2↑(𝑁 − 1)) + 1)))
8985, 88oveq12d 6814 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) = ((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))))
9089oveq1d 6811 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) = (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1))
9177, 90eqtrd 2805 . . . . . . . 8 (𝑁 ∈ ℕ → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1))
9291adantr 466 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1))
9340, 92breq12d 4800 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2) ↔ ((2↑(2↑𝑁)) + 𝑀) < (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1)))
94933adant3 1126 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2) ↔ ((2↑(2↑𝑁)) + 𝑀) < (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1)))
9574, 94mpbird 247 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2))
9634nn0red 11559 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑𝑁)) + 𝑀) ∈ ℝ)
97 nn0ge0 11525 . . . . . . . . . . 11 ((2↑(2↑𝑁)) ∈ ℕ0 → 0 ≤ (2↑(2↑𝑁)))
9824, 97syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ (2↑(2↑𝑁)))
9998, 20anim12i 600 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (0 ≤ (2↑(2↑𝑁)) ∧ 0 ≤ 𝑀))
10027, 99jca 501 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((2↑(2↑𝑁)) ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (0 ≤ (2↑(2↑𝑁)) ∧ 0 ≤ 𝑀)))
101 addge0 10723 . . . . . . . 8 ((((2↑(2↑𝑁)) ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (0 ≤ (2↑(2↑𝑁)) ∧ 0 ≤ 𝑀)) → 0 ≤ ((2↑(2↑𝑁)) + 𝑀))
102100, 101syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 0 ≤ ((2↑(2↑𝑁)) + 𝑀))
10396, 102resqrtcld 14364 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ)
104 peano2nn0 11540 . . . . . . . . 9 ((2↑(2↑(𝑁 − 1))) ∈ ℕ0 → ((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0)
10542, 104syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0)
106 nn0re 11508 . . . . . . . . 9 (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0 → ((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ)
107 nn0ge0 11525 . . . . . . . . 9 (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0 → 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1))
108106, 107jca 501 . . . . . . . 8 (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0 → (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ ∧ 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1)))
109105, 108syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ ∧ 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1)))
110109adantr 466 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ ∧ 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1)))
111 lt2sq 13144 . . . . . 6 ((((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ 0 ≤ (√‘((2↑(2↑𝑁)) + 𝑀))) ∧ (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ ∧ 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1))) → ((√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1) ↔ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2)))
112103, 51, 110, 111syl21anc 1475 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1) ↔ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2)))
1131123adant3 1126 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1) ↔ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2)))
11495, 113mpbird 247 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1))
11555, 114jca 501 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ∧ (√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1)))
11642nn0zd 11687 . . . . . 6 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 − 1))) ∈ ℤ)
117116adantr 466 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑(𝑁 − 1))) ∈ ℤ)
11849, 117jca 501 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ (2↑(2↑(𝑁 − 1))) ∈ ℤ))
1191183adant3 1126 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ (2↑(2↑(𝑁 − 1))) ∈ ℤ))
120 flbi 12825 . . 3 (((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ (2↑(2↑(𝑁 − 1))) ∈ ℤ) → ((⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1))) ↔ ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ∧ (√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1))))
121119, 120syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1))) ↔ ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ∧ (√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1))))
122115, 121mpbird 247 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4787  cfv 6030  (class class class)co 6796  cc 10140  cr 10141  0cc0 10142  1c1 10143   + caddc 10145   · cmul 10147   < clt 10280  cle 10281  cmin 10472  cn 11226  2c2 11276  0cn0 11499  cz 11584  cfl 12799  cexp 13067  csqrt 14181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-fl 12801  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183
This theorem is referenced by:  fmtnosqrt  41976
  Copyright terms: Public domain W3C validator