![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrlem3 | Structured version Visualization version GIF version |
Description: Lemma for 01sqrex 14198. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
sqrlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
sqrlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
Ref | Expression |
---|---|
sqrlem3 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqrlem1.1 | . . . 4 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
2 | ssrab2 3836 | . . . . 5 ⊢ {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} ⊆ ℝ+ | |
3 | rpssre 12046 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
4 | 2, 3 | sstri 3761 | . . . 4 ⊢ {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} ⊆ ℝ |
5 | 1, 4 | eqsstri 3784 | . . 3 ⊢ 𝑆 ⊆ ℝ |
6 | 5 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝑆 ⊆ ℝ) |
7 | sqrlem1.2 | . . . 4 ⊢ 𝐵 = sup(𝑆, ℝ, < ) | |
8 | 1, 7 | sqrlem2 14192 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) |
9 | ne0i 4069 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝑆 ≠ ∅) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝑆 ≠ ∅) |
11 | 1re 10241 | . . 3 ⊢ 1 ∈ ℝ | |
12 | 1, 7 | sqrlem1 14191 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) |
13 | breq2 4790 | . . . . 5 ⊢ (𝑧 = 1 → (𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 1)) | |
14 | 13 | ralbidv 3135 | . . . 4 ⊢ (𝑧 = 1 → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 1)) |
15 | 14 | rspcev 3460 | . . 3 ⊢ ((1 ∈ ℝ ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 1) → ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧) |
16 | 11, 12, 15 | sylancr 575 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧) |
17 | 6, 10, 16 | 3jca 1122 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ∃wrex 3062 {crab 3065 ⊆ wss 3723 ∅c0 4063 class class class wbr 4786 (class class class)co 6793 supcsup 8502 ℝcr 10137 1c1 10139 < clt 10276 ≤ cle 10277 2c2 11272 ℝ+crp 12035 ↑cexp 13067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-seq 13009 df-exp 13068 |
This theorem is referenced by: sqrlem4 14194 sqrlem5 14195 sqrlem6 14196 sqrlem7 14197 |
Copyright terms: Public domain | W3C validator |