![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrlem2 | Structured version Visualization version GIF version |
Description: Lemma for 01sqrex 14210. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
sqrlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
sqrlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
Ref | Expression |
---|---|
sqrlem2 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 474 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℝ+) | |
2 | rpre 12053 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
3 | rpgt0 12058 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
4 | 1re 10252 | . . . . . 6 ⊢ 1 ∈ ℝ | |
5 | lemul1 11088 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴))) | |
6 | 4, 5 | mp3an2 1561 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴))) |
7 | 2, 2, 3, 6 | syl12anc 1475 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ≤ 1 ↔ (𝐴 · 𝐴) ≤ (1 · 𝐴))) |
8 | 7 | biimpa 502 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐴 · 𝐴) ≤ (1 · 𝐴)) |
9 | rpcn 12055 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
10 | 9 | adantr 472 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ ℂ) |
11 | sqval 13137 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
12 | 11 | eqcomd 2767 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 · 𝐴) = (𝐴↑2)) |
13 | 10, 12 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐴 · 𝐴) = (𝐴↑2)) |
14 | 9 | mulid2d 10271 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (1 · 𝐴) = 𝐴) |
15 | 14 | adantr 472 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (1 · 𝐴) = 𝐴) |
16 | 8, 13, 15 | 3brtr3d 4836 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐴↑2) ≤ 𝐴) |
17 | oveq1 6822 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2)) | |
18 | 17 | breq1d 4815 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥↑2) ≤ 𝐴 ↔ (𝐴↑2) ≤ 𝐴)) |
19 | sqrlem1.1 | . . 3 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
20 | 18, 19 | elrab2 3508 | . 2 ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℝ+ ∧ (𝐴↑2) ≤ 𝐴)) |
21 | 1, 16, 20 | sylanbrc 701 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 {crab 3055 class class class wbr 4805 (class class class)co 6815 supcsup 8514 ℂcc 10147 ℝcr 10148 0cc0 10149 1c1 10150 · cmul 10154 < clt 10287 ≤ cle 10288 2c2 11283 ℝ+crp 12046 ↑cexp 13075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-seq 13017 df-exp 13076 |
This theorem is referenced by: sqrlem3 14205 sqrlem4 14206 |
Copyright terms: Public domain | W3C validator |