MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqoddm1div8 Structured version   Visualization version   GIF version

Theorem sqoddm1div8 13222
Description: A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
sqoddm1div8 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2))

Proof of Theorem sqoddm1div8
StepHypRef Expression
1 oveq1 6820 . . . . . 6 (𝑀 = ((2 · 𝑁) + 1) → (𝑀↑2) = (((2 · 𝑁) + 1)↑2))
2 2z 11601 . . . . . . . . . 10 2 ∈ ℤ
32a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ∈ ℤ)
4 id 22 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
53, 4zmulcld 11680 . . . . . . . 8 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
65zcnd 11675 . . . . . . 7 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
7 binom21 13174 . . . . . . 7 ((2 · 𝑁) ∈ ℂ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
86, 7syl 17 . . . . . 6 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
91, 8sylan9eqr 2816 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (𝑀↑2) = ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1))
109oveq1d 6828 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((𝑀↑2) − 1) = (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1))
11 2cnd 11285 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 2 ∈ ℂ)
12 zcn 11574 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1311, 12sqmuld 13214 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2)))
14 sq2 13154 . . . . . . . . . . . 12 (2↑2) = 4
1514a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (2↑2) = 4)
1615oveq1d 6828 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2↑2) · (𝑁↑2)) = (4 · (𝑁↑2)))
1713, 16eqtrd 2794 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 · 𝑁)↑2) = (4 · (𝑁↑2)))
18 mulass 10216 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
1918eqcomd 2766 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · (2 · 𝑁)) = ((2 · 2) · 𝑁))
2011, 11, 12, 19syl3anc 1477 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 · (2 · 𝑁)) = ((2 · 2) · 𝑁))
21 2t2e4 11369 . . . . . . . . . . . 12 (2 · 2) = 4
2221a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (2 · 2) = 4)
2322oveq1d 6828 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · 2) · 𝑁) = (4 · 𝑁))
2420, 23eqtrd 2794 . . . . . . . . 9 (𝑁 ∈ ℤ → (2 · (2 · 𝑁)) = (4 · 𝑁))
2517, 24oveq12d 6831 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
2625oveq1d 6828 . . . . . . 7 (𝑁 ∈ ℤ → ((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) = (((4 · (𝑁↑2)) + (4 · 𝑁)) + 1))
2726oveq1d 6828 . . . . . 6 (𝑁 ∈ ℤ → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1))
28 4z 11603 . . . . . . . . . . 11 4 ∈ ℤ
2928a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 4 ∈ ℤ)
30 zsqcl 13128 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
3129, 30zmulcld 11680 . . . . . . . . 9 (𝑁 ∈ ℤ → (4 · (𝑁↑2)) ∈ ℤ)
3231zcnd 11675 . . . . . . . 8 (𝑁 ∈ ℤ → (4 · (𝑁↑2)) ∈ ℂ)
3329, 4zmulcld 11680 . . . . . . . . 9 (𝑁 ∈ ℤ → (4 · 𝑁) ∈ ℤ)
3433zcnd 11675 . . . . . . . 8 (𝑁 ∈ ℤ → (4 · 𝑁) ∈ ℂ)
3532, 34addcld 10251 . . . . . . 7 (𝑁 ∈ ℤ → ((4 · (𝑁↑2)) + (4 · 𝑁)) ∈ ℂ)
36 pncan1 10646 . . . . . . 7 (((4 · (𝑁↑2)) + (4 · 𝑁)) ∈ ℂ → ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3735, 36syl 17 . . . . . 6 (𝑁 ∈ ℤ → ((((4 · (𝑁↑2)) + (4 · 𝑁)) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3827, 37eqtrd 2794 . . . . 5 (𝑁 ∈ ℤ → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
3938adantr 472 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((((2 · 𝑁)↑2) + (2 · (2 · 𝑁))) + 1) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4010, 39eqtrd 2794 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((𝑀↑2) − 1) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4140oveq1d 6828 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8))
42 4cn 11290 . . . . . . 7 4 ∈ ℂ
4342a1i 11 . . . . . 6 (𝑁 ∈ ℤ → 4 ∈ ℂ)
4430zcnd 11675 . . . . . 6 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℂ)
4543, 44, 12adddid 10256 . . . . 5 (𝑁 ∈ ℤ → (4 · ((𝑁↑2) + 𝑁)) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
4645eqcomd 2766 . . . 4 (𝑁 ∈ ℤ → ((4 · (𝑁↑2)) + (4 · 𝑁)) = (4 · ((𝑁↑2) + 𝑁)))
4746oveq1d 6828 . . 3 (𝑁 ∈ ℤ → (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / 8))
4847adantr 472 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((4 · (𝑁↑2)) + (4 · 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / 8))
49 4t2e8 11373 . . . . . . 7 (4 · 2) = 8
5049a1i 11 . . . . . 6 (𝑁 ∈ ℤ → (4 · 2) = 8)
5150eqcomd 2766 . . . . 5 (𝑁 ∈ ℤ → 8 = (4 · 2))
5251oveq2d 6829 . . . 4 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)))
5330, 4zaddcld 11678 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) ∈ ℤ)
5453zcnd 11675 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) ∈ ℂ)
55 2cnne0 11434 . . . . . 6 (2 ∈ ℂ ∧ 2 ≠ 0)
5655a1i 11 . . . . 5 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
57 4ne0 11309 . . . . . . 7 4 ≠ 0
5842, 57pm3.2i 470 . . . . . 6 (4 ∈ ℂ ∧ 4 ≠ 0)
5958a1i 11 . . . . 5 (𝑁 ∈ ℤ → (4 ∈ ℂ ∧ 4 ≠ 0))
60 divcan5 10919 . . . . 5 ((((𝑁↑2) + 𝑁) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)) = (((𝑁↑2) + 𝑁) / 2))
6154, 56, 59, 60syl3anc 1477 . . . 4 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / (4 · 2)) = (((𝑁↑2) + 𝑁) / 2))
6212sqvald 13199 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁↑2) = (𝑁 · 𝑁))
6362oveq1d 6828 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) = ((𝑁 · 𝑁) + 𝑁))
6412mulid1d 10249 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 · 1) = 𝑁)
6564eqcomd 2766 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 = (𝑁 · 1))
6665oveq2d 6829 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) + 𝑁) = ((𝑁 · 𝑁) + (𝑁 · 1)))
67 1cnd 10248 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∈ ℂ)
68 adddi 10217 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 · (𝑁 + 1)) = ((𝑁 · 𝑁) + (𝑁 · 1)))
6968eqcomd 2766 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 · 𝑁) + (𝑁 · 1)) = (𝑁 · (𝑁 + 1)))
7012, 12, 67, 69syl3anc 1477 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) + (𝑁 · 1)) = (𝑁 · (𝑁 + 1)))
7163, 66, 703eqtrd 2798 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) + 𝑁) = (𝑁 · (𝑁 + 1)))
7271oveq1d 6828 . . . 4 (𝑁 ∈ ℤ → (((𝑁↑2) + 𝑁) / 2) = ((𝑁 · (𝑁 + 1)) / 2))
7352, 61, 723eqtrd 2798 . . 3 (𝑁 ∈ ℤ → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
7473adantr 472 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → ((4 · ((𝑁↑2) + 𝑁)) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
7541, 48, 743eqtrd 2798 1 ((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  cmin 10458   / cdiv 10876  2c2 11262  4c4 11264  8c8 11268  cz 11569  cexp 13054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-n0 11485  df-z 11570  df-uz 11880  df-seq 12996  df-exp 13055
This theorem is referenced by:  sqoddm1div8z  15280
  Copyright terms: Public domain W3C validator