Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqlecan Structured version   Visualization version   GIF version

Theorem sqlecan 13011
 Description: Cancel one factor of a square in a ≤ comparison. Unlike lemul1 10913, the common factor 𝐴 may be zero. (Contributed by NM, 17-Jan-2008.)
Assertion
Ref Expression
sqlecan (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))

Proof of Theorem sqlecan
StepHypRef Expression
1 0re 10078 . . . 4 0 ∈ ℝ
2 leloe 10162 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 706 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 recn 10064 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
5 sqval 12962 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
64, 5syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝐴↑2) = (𝐴 · 𝐴))
76breq1d 4695 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
873ad2ant1 1102 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
9 lemul1 10913 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
108, 9bitr4d 271 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
11103exp 1283 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1211exp4a 632 . . . . . . 7 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵)))))
1312pm2.43a 54 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1413adantrd 483 . . . . 5 (𝐴 ∈ ℝ → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1514com23 86 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
16 sq0 12995 . . . . . . . . . . . 12 (0↑2) = 0
17 0le0 11148 . . . . . . . . . . . 12 0 ≤ 0
1816, 17eqbrtri 4706 . . . . . . . . . . 11 (0↑2) ≤ 0
19 recn 10064 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2019mul01d 10273 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 · 0) = 0)
2118, 20syl5breqr 4723 . . . . . . . . . 10 (𝐵 ∈ ℝ → (0↑2) ≤ (𝐵 · 0))
2221adantl 481 . . . . . . . . 9 ((0 = 𝐴𝐵 ∈ ℝ) → (0↑2) ≤ (𝐵 · 0))
23 oveq1 6697 . . . . . . . . . . 11 (0 = 𝐴 → (0↑2) = (𝐴↑2))
24 oveq2 6698 . . . . . . . . . . 11 (0 = 𝐴 → (𝐵 · 0) = (𝐵 · 𝐴))
2523, 24breq12d 4698 . . . . . . . . . 10 (0 = 𝐴 → ((0↑2) ≤ (𝐵 · 0) ↔ (𝐴↑2) ≤ (𝐵 · 𝐴)))
2625adantr 480 . . . . . . . . 9 ((0 = 𝐴𝐵 ∈ ℝ) → ((0↑2) ≤ (𝐵 · 0) ↔ (𝐴↑2) ≤ (𝐵 · 𝐴)))
2722, 26mpbid 222 . . . . . . . 8 ((0 = 𝐴𝐵 ∈ ℝ) → (𝐴↑2) ≤ (𝐵 · 𝐴))
2827adantrr 753 . . . . . . 7 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ≤ (𝐵 · 𝐴))
29 breq1 4688 . . . . . . . . 9 (0 = 𝐴 → (0 ≤ 𝐵𝐴𝐵))
3029biimpa 500 . . . . . . . 8 ((0 = 𝐴 ∧ 0 ≤ 𝐵) → 𝐴𝐵)
3130adantrl 752 . . . . . . 7 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴𝐵)
3228, 312thd 255 . . . . . 6 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
3332ex 449 . . . . 5 (0 = 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵)))
3433a1i 11 . . . 4 (𝐴 ∈ ℝ → (0 = 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
3515, 34jaod 394 . . 3 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
363, 35sylbid 230 . 2 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
3736imp31 447 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   class class class wbr 4685  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974   · cmul 9979   < clt 10112   ≤ cle 10113  2c2 11108  ↑cexp 12900 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-seq 12842  df-exp 12901 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator