MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqf11 Structured version   Visualization version   GIF version

Theorem sqf11 24910
Description: A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015.)
Assertion
Ref Expression
sqf11 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝

Proof of Theorem sqf11
StepHypRef Expression
1 nnnn0 11337 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
2 nnnn0 11337 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
3 pc11 15631 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
41, 2, 3syl2an 493 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
54ad2ant2r 798 . 2 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
6 eleq1 2718 . . . . 5 ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ))
7 dfbi3 1018 . . . . . 6 (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) ↔ (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) ∨ (¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ)))
8 simpll 805 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → 𝐴 ∈ ℕ)
98adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
10 simpllr 815 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (μ‘𝐴) ≠ 0)
11 simpr 476 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
12 sqfpc 24908 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0 ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ 1)
139, 10, 11, 12syl3anc 1366 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ 1)
14 nnle1eq1 11086 . . . . . . . . . 10 ((𝑝 pCnt 𝐴) ∈ ℕ → ((𝑝 pCnt 𝐴) ≤ 1 ↔ (𝑝 pCnt 𝐴) = 1))
1513, 14syl5ibcom 235 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ → (𝑝 pCnt 𝐴) = 1))
16 simprl 809 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → 𝐵 ∈ ℕ)
1716adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
18 simplrr 818 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (μ‘𝐵) ≠ 0)
19 sqfpc 24908 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0 ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ 1)
2017, 18, 11, 19syl3anc 1366 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ≤ 1)
21 nnle1eq1 11086 . . . . . . . . . 10 ((𝑝 pCnt 𝐵) ∈ ℕ → ((𝑝 pCnt 𝐵) ≤ 1 ↔ (𝑝 pCnt 𝐵) = 1))
2220, 21syl5ibcom 235 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ → (𝑝 pCnt 𝐵) = 1))
2315, 22anim12d 585 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) → ((𝑝 pCnt 𝐴) = 1 ∧ (𝑝 pCnt 𝐵) = 1)))
24 eqtr3 2672 . . . . . . . 8 (((𝑝 pCnt 𝐴) = 1 ∧ (𝑝 pCnt 𝐵) = 1) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
2523, 24syl6 35 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
26 id 22 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
27 pccl 15601 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
2826, 8, 27syl2anr 494 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
29 elnn0 11332 . . . . . . . . . . 11 ((𝑝 pCnt 𝐴) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
3028, 29sylib 208 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
3130ord 391 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐴) ∈ ℕ → (𝑝 pCnt 𝐴) = 0))
32 pccl 15601 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
3326, 16, 32syl2anr 494 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐵) ∈ ℕ0)
34 elnn0 11332 . . . . . . . . . . 11 ((𝑝 pCnt 𝐵) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐵) ∈ ℕ ∨ (𝑝 pCnt 𝐵) = 0))
3533, 34sylib 208 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ ∨ (𝑝 pCnt 𝐵) = 0))
3635ord 391 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐵) ∈ ℕ → (𝑝 pCnt 𝐵) = 0))
3731, 36anim12d 585 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ) → ((𝑝 pCnt 𝐴) = 0 ∧ (𝑝 pCnt 𝐵) = 0)))
38 eqtr3 2672 . . . . . . . 8 (((𝑝 pCnt 𝐴) = 0 ∧ (𝑝 pCnt 𝐵) = 0) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵))
3937, 38syl6 35 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
4025, 39jaod 394 . . . . . 6 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((((𝑝 pCnt 𝐴) ∈ ℕ ∧ (𝑝 pCnt 𝐵) ∈ ℕ) ∨ (¬ (𝑝 pCnt 𝐴) ∈ ℕ ∧ ¬ (𝑝 pCnt 𝐵) ∈ ℕ)) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
417, 40syl5bi 232 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) → (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵)))
426, 41impbid2 216 . . . 4 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ)))
43 pcelnn 15621 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝𝐴))
4426, 8, 43syl2anr 494 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝𝐴))
45 pcelnn 15621 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ) → ((𝑝 pCnt 𝐵) ∈ ℕ ↔ 𝑝𝐵))
4626, 16, 45syl2anr 494 . . . . 5 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐵) ∈ ℕ ↔ 𝑝𝐵))
4744, 46bibi12d 334 . . . 4 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (((𝑝 pCnt 𝐴) ∈ ℕ ↔ (𝑝 pCnt 𝐵) ∈ ℕ) ↔ (𝑝𝐴𝑝𝐵)))
4842, 47bitrd 268 . . 3 ((((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
4948ralbidva 3014 . 2 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) = (𝑝 pCnt 𝐵) ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
505, 49bitrd 268 1 (((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) ∧ (𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0)) → (𝐴 = 𝐵 ↔ ∀𝑝 ∈ ℙ (𝑝𝐴𝑝𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941   class class class wbr 4685  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975  cle 10113  cn 11058  0cn0 11330  cdvds 15027  cprime 15432   pCnt cpc 15588  μcmu 24866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589  df-mu 24872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator