MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqeqori Structured version   Visualization version   GIF version

Theorem sqeqori 13016
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.)
Hypotheses
Ref Expression
binom2.1 𝐴 ∈ ℂ
binom2.2 𝐵 ∈ ℂ
Assertion
Ref Expression
sqeqori ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵))

Proof of Theorem sqeqori
StepHypRef Expression
1 binom2.1 . . . . 5 𝐴 ∈ ℂ
2 binom2.2 . . . . 5 𝐵 ∈ ℂ
31, 2subsqi 13015 . . . 4 ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵))
43eqeq1i 2656 . . 3 (((𝐴↑2) − (𝐵↑2)) = 0 ↔ ((𝐴 + 𝐵) · (𝐴𝐵)) = 0)
51sqcli 12984 . . . 4 (𝐴↑2) ∈ ℂ
62sqcli 12984 . . . 4 (𝐵↑2) ∈ ℂ
75, 6subeq0i 10399 . . 3 (((𝐴↑2) − (𝐵↑2)) = 0 ↔ (𝐴↑2) = (𝐵↑2))
81, 2addcli 10082 . . . 4 (𝐴 + 𝐵) ∈ ℂ
91, 2subcli 10395 . . . 4 (𝐴𝐵) ∈ ℂ
108, 9mul0ori 10713 . . 3 (((𝐴 + 𝐵) · (𝐴𝐵)) = 0 ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0))
114, 7, 103bitr3i 290 . 2 ((𝐴↑2) = (𝐵↑2) ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0))
12 orcom 401 . 2 (((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0) ↔ ((𝐴𝐵) = 0 ∨ (𝐴 + 𝐵) = 0))
131, 2subeq0i 10399 . . 3 ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵)
141, 2subnegi 10398 . . . . 5 (𝐴 − -𝐵) = (𝐴 + 𝐵)
1514eqeq1i 2656 . . . 4 ((𝐴 − -𝐵) = 0 ↔ (𝐴 + 𝐵) = 0)
162negcli 10387 . . . . 5 -𝐵 ∈ ℂ
171, 16subeq0i 10399 . . . 4 ((𝐴 − -𝐵) = 0 ↔ 𝐴 = -𝐵)
1815, 17bitr3i 266 . . 3 ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵)
1913, 18orbi12i 542 . 2 (((𝐴𝐵) = 0 ∨ (𝐴 + 𝐵) = 0) ↔ (𝐴 = 𝐵𝐴 = -𝐵))
2011, 12, 193bitri 286 1 ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 382   = wceq 1523  wcel 2030  (class class class)co 6690  cc 9972  0cc0 9974   + caddc 9977   · cmul 9979  cmin 10304  -cneg 10305  2c2 11108  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-seq 12842  df-exp 12901
This theorem is referenced by:  subsq0i  13017  sqeqor  13018  sinhalfpilem  24260
  Copyright terms: Public domain W3C validator