![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sq4e2t8 | Structured version Visualization version GIF version |
Description: The square of 4 is 2 times 8. (Contributed by AV, 20-Jul-2021.) |
Ref | Expression |
---|---|
sq4e2t8 | ⊢ (4↑2) = (2 · 8) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t2e4 11369 | . . . 4 ⊢ (2 · 2) = 4 | |
2 | 1 | eqcomi 2769 | . . 3 ⊢ 4 = (2 · 2) |
3 | 2 | oveq1i 6823 | . 2 ⊢ (4↑2) = ((2 · 2)↑2) |
4 | 2cn 11283 | . . 3 ⊢ 2 ∈ ℂ | |
5 | 4, 4 | sqmuli 13141 | . 2 ⊢ ((2 · 2)↑2) = ((2↑2) · (2↑2)) |
6 | 4 | sqvali 13137 | . . . 4 ⊢ (2↑2) = (2 · 2) |
7 | sq2 13154 | . . . 4 ⊢ (2↑2) = 4 | |
8 | 6, 7 | oveq12i 6825 | . . 3 ⊢ ((2↑2) · (2↑2)) = ((2 · 2) · 4) |
9 | 4cn 11290 | . . . 4 ⊢ 4 ∈ ℂ | |
10 | 4, 4, 9 | mulassi 10241 | . . 3 ⊢ ((2 · 2) · 4) = (2 · (2 · 4)) |
11 | 4t2e8 11373 | . . . . 5 ⊢ (4 · 2) = 8 | |
12 | 9, 4, 11 | mulcomli 10239 | . . . 4 ⊢ (2 · 4) = 8 |
13 | 12 | oveq2i 6824 | . . 3 ⊢ (2 · (2 · 4)) = (2 · 8) |
14 | 8, 10, 13 | 3eqtri 2786 | . 2 ⊢ ((2↑2) · (2↑2)) = (2 · 8) |
15 | 3, 5, 14 | 3eqtri 2786 | 1 ⊢ (4↑2) = (2 · 8) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 (class class class)co 6813 · cmul 10133 2c2 11262 4c4 11264 8c8 11268 ↑cexp 13054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-n0 11485 df-z 11570 df-uz 11880 df-seq 12996 df-exp 13055 |
This theorem is referenced by: 2lgsoddprmlem3c 25336 2lgsoddprmlem3d 25337 ex-exp 27618 |
Copyright terms: Public domain | W3C validator |