![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sq1 | Structured version Visualization version GIF version |
Description: The square of 1 is 1. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
sq1 | ⊢ (1↑2) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 11572 | . 2 ⊢ 2 ∈ ℤ | |
2 | 1exp 13054 | . 2 ⊢ (2 ∈ ℤ → (1↑2) = 1) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (1↑2) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1620 ∈ wcel 2127 (class class class)co 6801 1c1 10100 2c2 11233 ℤcz 11540 ↑cexp 13025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-n0 11456 df-z 11541 df-uz 11851 df-seq 12967 df-exp 13026 |
This theorem is referenced by: neg1sqe1 13124 binom21 13145 binom2sub1 13147 sq01 13151 sqrlem1 14153 sqrt1 14182 sinbnd 15080 cosbnd 15081 cos1bnd 15087 cos2bnd 15088 cos01gt0 15091 sqnprm 15587 numdensq 15635 zsqrtelqelz 15639 prmreclem1 15793 prmreclem2 15794 4sqlem13 15834 4sqlem19 15840 odadd 18424 abvneg 19007 gzrngunitlem 19984 gzrngunit 19985 zringunit 20009 sinhalfpilem 24385 cos2pi 24398 tangtx 24427 coskpi 24442 tanregt0 24455 efif1olem3 24460 root1id 24665 root1cj 24667 isosctrlem2 24719 asin1 24791 efiatan2 24814 bndatandm 24826 atans2 24828 wilthlem1 24964 dchrinv 25156 sum2dchr 25169 lgslem1 25192 lgsne0 25230 lgssq 25232 lgssq2 25233 1lgs 25235 lgs1 25236 lgsdinn0 25240 lgsquad2lem2 25280 lgsquad3 25282 2lgsoddprmlem3a 25305 2sqlem9 25322 2sqlem10 25323 2sqlem11 25324 2sqblem 25326 2sqb 25327 mulog2sumlem2 25394 pntlemb 25456 axlowdimlem16 26007 ex-pr 27569 normlem1 28247 kbpj 29095 hstnmoc 29362 hstle1 29365 hst1h 29366 hstle 29369 strlem3a 29391 strlem4 29393 strlem5 29394 jplem1 29407 nn0sqeq1 29793 dvasin 33778 dvacos 33779 areacirclem1 33782 areacirc 33787 cntotbnd 33877 pell1qrge1 37905 pell1qr1 37906 pell1qrgaplem 37908 pell14qrgapw 37911 pellqrex 37914 rmspecsqrtnqOLD 37942 rmspecnonsq 37943 rmspecfund 37945 rmspecpos 37952 stoweidlem1 40690 wallispi2lem2 40761 stirlinglem10 40772 lighneallem2 42002 onetansqsecsq 42984 cotsqcscsq 42985 |
Copyright terms: Public domain | W3C validator |