![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spv | Structured version Visualization version GIF version |
Description: Specialization, using implicit substitution. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
spv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 219 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimv 2293 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 |
This theorem is referenced by: chvarv 2299 cbvalv 2309 ru 3467 nalset 4828 isowe2 6640 tfisi 7100 findcard2 8241 marypha1lem 8380 setind 8648 karden 8796 kmlem4 9013 axgroth3 9691 ramcl 15780 alexsubALTlem3 21900 i1fd 23493 dfpo2 31771 dfon2lem6 31817 trer 32435 axc11n-16 34542 elsetrecslem 42770 |
Copyright terms: Public domain | W3C validator |