MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sptruw Structured version   Visualization version   GIF version

Theorem sptruw 1773
Description: Version of sp 2091 when 𝜑 is true. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 23-Apr-2017.)
Hypothesis
Ref Expression
sptruw.1 𝜑
Assertion
Ref Expression
sptruw (∀𝑥𝜑𝜑)

Proof of Theorem sptruw
StepHypRef Expression
1 sptruw.1 . 2 𝜑
21a1i 11 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1521
This theorem was proved from axioms:  ax-mp 5  ax-1 6
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator