MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthonepeq Structured version   Visualization version   GIF version

Theorem spthonepeq 26704
Description: The endpoints of a simple path between two vertices are equal iff the path is of length 0. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 18-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
spthonepeq (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0))

Proof of Theorem spthonepeq
StepHypRef Expression
1 eqid 2651 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21spthonprop 26697 . 2 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)))
31istrlson 26659 . . . . . 6 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
433adantl1 1237 . . . . 5 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
5 isspth 26676 . . . . . 6 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
65a1i 11 . . . . 5 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)))
74, 6anbi12d 747 . . . 4 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) ↔ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) ∧ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))))
81wlkonprop 26610 . . . . . . . 8 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
9 wlkcl 26567 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (#‘𝐹) ∈ ℕ0)
101wlkp 26568 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))
11 df-f1 5931 . . . . . . . . . . . . . . . 16 (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) ↔ (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃))
12 eqeq2 2662 . . . . . . . . . . . . . . . . . 18 (𝐴 = 𝐵 → ((𝑃‘0) = 𝐴 ↔ (𝑃‘0) = 𝐵))
13 eqtr3 2672 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(#‘𝐹)) = 𝐵 ∧ (𝑃‘0) = 𝐵) → (𝑃‘(#‘𝐹)) = (𝑃‘0))
14 elnn0uz 11763 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝐹) ∈ ℕ0 ↔ (#‘𝐹) ∈ (ℤ‘0))
15 eluzfz2 12387 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝐹) ∈ (ℤ‘0) → (#‘𝐹) ∈ (0...(#‘𝐹)))
1614, 15sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝐹) ∈ ℕ0 → (#‘𝐹) ∈ (0...(#‘𝐹)))
17 0elfz 12475 . . . . . . . . . . . . . . . . . . . . . . . 24 ((#‘𝐹) ∈ ℕ0 → 0 ∈ (0...(#‘𝐹)))
1816, 17jca 553 . . . . . . . . . . . . . . . . . . . . . . 23 ((#‘𝐹) ∈ ℕ0 → ((#‘𝐹) ∈ (0...(#‘𝐹)) ∧ 0 ∈ (0...(#‘𝐹))))
19 f1veqaeq 6554 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((#‘𝐹) ∈ (0...(#‘𝐹)) ∧ 0 ∈ (0...(#‘𝐹)))) → ((𝑃‘(#‘𝐹)) = (𝑃‘0) → (#‘𝐹) = 0))
2018, 19sylan2 490 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) ∧ (#‘𝐹) ∈ ℕ0) → ((𝑃‘(#‘𝐹)) = (𝑃‘0) → (#‘𝐹) = 0))
2120ex 449 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) → ((#‘𝐹) ∈ ℕ0 → ((𝑃‘(#‘𝐹)) = (𝑃‘0) → (#‘𝐹) = 0)))
2221com13 88 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘(#‘𝐹)) = (𝑃‘0) → ((#‘𝐹) ∈ ℕ0 → (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) → (#‘𝐹) = 0)))
2313, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘(#‘𝐹)) = 𝐵 ∧ (𝑃‘0) = 𝐵) → ((#‘𝐹) ∈ ℕ0 → (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) → (#‘𝐹) = 0)))
2423expcom 450 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = 𝐵 → ((𝑃‘(#‘𝐹)) = 𝐵 → ((#‘𝐹) ∈ ℕ0 → (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) → (#‘𝐹) = 0))))
2512, 24syl6bi 243 . . . . . . . . . . . . . . . . 17 (𝐴 = 𝐵 → ((𝑃‘0) = 𝐴 → ((𝑃‘(#‘𝐹)) = 𝐵 → ((#‘𝐹) ∈ ℕ0 → (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) → (#‘𝐹) = 0)))))
2625com15 101 . . . . . . . . . . . . . . . 16 (𝑃:(0...(#‘𝐹))–1-1→(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(#‘𝐹)) = 𝐵 → ((#‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (#‘𝐹) = 0)))))
2711, 26sylbir 225 . . . . . . . . . . . . . . 15 ((𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃) → ((𝑃‘0) = 𝐴 → ((𝑃‘(#‘𝐹)) = 𝐵 → ((#‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (#‘𝐹) = 0)))))
2827expcom 450 . . . . . . . . . . . . . 14 (Fun 𝑃 → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(#‘𝐹)) = 𝐵 → ((#‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (#‘𝐹) = 0))))))
2928com15 101 . . . . . . . . . . . . 13 ((#‘𝐹) ∈ ℕ0 → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(#‘𝐹)) = 𝐵 → (Fun 𝑃 → (𝐴 = 𝐵 → (#‘𝐹) = 0))))))
309, 10, 29sylc 65 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = 𝐴 → ((𝑃‘(#‘𝐹)) = 𝐵 → (Fun 𝑃 → (𝐴 = 𝐵 → (#‘𝐹) = 0)))))
31303imp1 1302 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ Fun 𝑃) → (𝐴 = 𝐵 → (#‘𝐹) = 0))
32 fveq2 6229 . . . . . . . . . . . . . . . . 17 ((#‘𝐹) = 0 → (𝑃‘(#‘𝐹)) = (𝑃‘0))
3332eqeq1d 2653 . . . . . . . . . . . . . . . 16 ((#‘𝐹) = 0 → ((𝑃‘(#‘𝐹)) = 𝐵 ↔ (𝑃‘0) = 𝐵))
3433anbi2d 740 . . . . . . . . . . . . . . 15 ((#‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵)))
35 eqtr2 2671 . . . . . . . . . . . . . . 15 (((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵) → 𝐴 = 𝐵)
3634, 35syl6bi 243 . . . . . . . . . . . . . 14 ((#‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → 𝐴 = 𝐵))
3736com12 32 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → ((#‘𝐹) = 0 → 𝐴 = 𝐵))
38373adant1 1099 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → ((#‘𝐹) = 0 → 𝐴 = 𝐵))
3938adantr 480 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ Fun 𝑃) → ((#‘𝐹) = 0 → 𝐴 = 𝐵))
4031, 39impbid 202 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0))
4140ex 449 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0)))
42413ad2ant3 1104 . . . . . . . 8 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0)))
438, 42syl 17 . . . . . . 7 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0)))
4443adantld 482 . . . . . 6 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0)))
4544adantr 480 . . . . 5 ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0)))
4645imp 444 . . . 4 (((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) ∧ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)) → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0))
477, 46syl6bi 243 . . 3 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0)))
48473impia 1280 . 2 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)) → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0))
492, 48syl 17 1 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐵 ↔ (#‘𝐹) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231   class class class wbr 4685  ccnv 5142  Fun wfun 5920  wf 5922  1-1wf1 5923  cfv 5926  (class class class)co 6690  0cc0 9974  0cn0 11330  cuz 11725  ...cfz 12364  #chash 13157  Vtxcvtx 25919  Walkscwlks 26548  WalksOncwlkson 26549  Trailsctrls 26643  TrailsOnctrlson 26644  SPathscspths 26665  SPathsOncspthson 26667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-wlks 26551  df-wlkson 26552  df-trls 26645  df-trlson 26646  df-pths 26668  df-spths 26669  df-spthson 26671
This theorem is referenced by:  wspthsnonn0vne  26882
  Copyright terms: Public domain W3C validator