MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbe Structured version   Visualization version   GIF version

Theorem spsbe 2053
Description: A specialization theorem. (Contributed by NM, 29-Jun-1993.) (Proof shortened by Wolf Lammen, 3-May-2018.)
Assertion
Ref Expression
spsbe ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑)

Proof of Theorem spsbe
StepHypRef Expression
1 sb1 2052 . 2 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
2 exsimpr 1947 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
31, 2syl 17 1 ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wex 1852  [wsb 2049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885
This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1853  df-sb 2050
This theorem is referenced by:  sbft  2526  2mo  2700  bj-sbftv  33099  bj-sbfvv  33101  wl-lem-moexsb  33684  spsbce-2  39106  sb5ALT  39256  sb5ALTVD  39671
  Copyright terms: Public domain W3C validator